用于进行光学变换的相干系统

Guo‐zhen Yang, Yansong Chen, Shi-Hai Zhing, B. Dong, Dehuan Li
{"title":"用于进行光学变换的相干系统","authors":"Guo‐zhen Yang, Yansong Chen, Shi-Hai Zhing, B. Dong, Dehuan Li","doi":"10.1109/HICSS.1989.47188","DOIUrl":null,"url":null,"abstract":"A coherent optical system for performing an arbitrary linear transform is described. The system consists of a holographic mask and two Fourier lenses. A set of equations for determining the amplitude-phase distribution of the mask is given, and the mask is generated by combination of a computer-generated hologram and optical holography. As an example, a Walsh-Hadamard transform of order 32 is realized.<<ETX>>","PeriodicalId":300182,"journal":{"name":"[1989] Proceedings of the Twenty-Second Annual Hawaii International Conference on System Sciences. Volume 1: Architecture Track","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A coherent system for performing an optical transform\",\"authors\":\"Guo‐zhen Yang, Yansong Chen, Shi-Hai Zhing, B. Dong, Dehuan Li\",\"doi\":\"10.1109/HICSS.1989.47188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A coherent optical system for performing an arbitrary linear transform is described. The system consists of a holographic mask and two Fourier lenses. A set of equations for determining the amplitude-phase distribution of the mask is given, and the mask is generated by combination of a computer-generated hologram and optical holography. As an example, a Walsh-Hadamard transform of order 32 is realized.<<ETX>>\",\"PeriodicalId\":300182,\"journal\":{\"name\":\"[1989] Proceedings of the Twenty-Second Annual Hawaii International Conference on System Sciences. Volume 1: Architecture Track\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1989] Proceedings of the Twenty-Second Annual Hawaii International Conference on System Sciences. Volume 1: Architecture Track\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HICSS.1989.47188\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1989] Proceedings of the Twenty-Second Annual Hawaii International Conference on System Sciences. Volume 1: Architecture Track","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HICSS.1989.47188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

描述了一种用于进行任意线性变换的相干光学系统。该系统由一个全息掩模和两个傅立叶透镜组成。给出了一套确定掩模幅相分布的方程,并将计算机全息图与光学全息相结合来生成掩模。作为一个例子,实现了一个32阶的Walsh-Hadamard变换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A coherent system for performing an optical transform
A coherent optical system for performing an arbitrary linear transform is described. The system consists of a holographic mask and two Fourier lenses. A set of equations for determining the amplitude-phase distribution of the mask is given, and the mask is generated by combination of a computer-generated hologram and optical holography. As an example, a Walsh-Hadamard transform of order 32 is realized.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信