时变散射的渐近精确辐射边界条件

L. Thompson, R. Huan
{"title":"时变散射的渐近精确辐射边界条件","authors":"L. Thompson, R. Huan","doi":"10.1115/imece1999-0236","DOIUrl":null,"url":null,"abstract":"\n Asymptotic and exact local radiation boundary conditions first derived by Hagstrom and Hariharan are reformulated as an auxiliary Cauchy problem for linear first-order systems of ordinary equations on the boundary for each harmonic on a circle or sphere in two- or three-dimensions, respectively. With this reformulation, the resulting radiation boundary condition involves first-order derivatives only and can be computed efficiently and concurrently with standard semi-discrete finite element methods for the near-field solution without changing the banded/sparse structure of the finite element equations. In 3D, with the number of equations in the Cauchy problem equal to the mode number, this reformulation is exact. If fewer equations are used, then the boundary conditions form uniform asymptotic approximations to the exact condition. Furthermore, using this approach, we formulate accurate radiation boundary conditions for the two-dimensional unbounded problem on a circle. Numerical studies of time-dependent radiation and scattering are performed to assess the accuracy and convergence properties of the boundary conditions when implemented in the finite element method. The results demonstrate that the new formulation has dramatically improved accuracy and efficiency for time domain simulations compared to standard boundary treatments.","PeriodicalId":387882,"journal":{"name":"Noise Control and Acoustics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1999-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Asymptotic and Exact Radiation Boundary Conditions for Time-Dependent Scattering\",\"authors\":\"L. Thompson, R. Huan\",\"doi\":\"10.1115/imece1999-0236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Asymptotic and exact local radiation boundary conditions first derived by Hagstrom and Hariharan are reformulated as an auxiliary Cauchy problem for linear first-order systems of ordinary equations on the boundary for each harmonic on a circle or sphere in two- or three-dimensions, respectively. With this reformulation, the resulting radiation boundary condition involves first-order derivatives only and can be computed efficiently and concurrently with standard semi-discrete finite element methods for the near-field solution without changing the banded/sparse structure of the finite element equations. In 3D, with the number of equations in the Cauchy problem equal to the mode number, this reformulation is exact. If fewer equations are used, then the boundary conditions form uniform asymptotic approximations to the exact condition. Furthermore, using this approach, we formulate accurate radiation boundary conditions for the two-dimensional unbounded problem on a circle. Numerical studies of time-dependent radiation and scattering are performed to assess the accuracy and convergence properties of the boundary conditions when implemented in the finite element method. The results demonstrate that the new formulation has dramatically improved accuracy and efficiency for time domain simulations compared to standard boundary treatments.\",\"PeriodicalId\":387882,\"journal\":{\"name\":\"Noise Control and Acoustics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Noise Control and Acoustics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece1999-0236\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Noise Control and Acoustics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece1999-0236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

首先由Hagstrom和Hariharan导出的渐近和精确局部辐射边界条件,分别被重新表述为二维或三维圆或球上各调和边界上的线性一阶常方程系统的辅助柯西问题。通过这种重新表述,得到的辐射边界条件只涉及一阶导数,并且可以在不改变有限元方程的带状/稀疏结构的情况下,与标准的半离散有限元方法有效地并行计算近场解。在三维中,当柯西问题中的方程数等于模态数时,这种重新表述是精确的。如果使用较少的方程,则边界条件形成精确条件的一致渐近逼近。此外,利用该方法,我们给出了圆上二维无界问题的精确辐射边界条件。对随时间的辐射和散射进行了数值研究,以评估在有限元方法中实现边界条件时的准确性和收敛性。结果表明,与标准边界处理相比,该方法显著提高了时域模拟的精度和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotic and Exact Radiation Boundary Conditions for Time-Dependent Scattering
Asymptotic and exact local radiation boundary conditions first derived by Hagstrom and Hariharan are reformulated as an auxiliary Cauchy problem for linear first-order systems of ordinary equations on the boundary for each harmonic on a circle or sphere in two- or three-dimensions, respectively. With this reformulation, the resulting radiation boundary condition involves first-order derivatives only and can be computed efficiently and concurrently with standard semi-discrete finite element methods for the near-field solution without changing the banded/sparse structure of the finite element equations. In 3D, with the number of equations in the Cauchy problem equal to the mode number, this reformulation is exact. If fewer equations are used, then the boundary conditions form uniform asymptotic approximations to the exact condition. Furthermore, using this approach, we formulate accurate radiation boundary conditions for the two-dimensional unbounded problem on a circle. Numerical studies of time-dependent radiation and scattering are performed to assess the accuracy and convergence properties of the boundary conditions when implemented in the finite element method. The results demonstrate that the new formulation has dramatically improved accuracy and efficiency for time domain simulations compared to standard boundary treatments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信