{"title":"Rademacher函数迭代对数律的上界","authors":"Santosh Ghimire","doi":"10.3126/nmsr.v39i2.51693","DOIUrl":null,"url":null,"abstract":"N. Kolmogorov introduced a law of the iterated logarithm, abbreviated LIL, in the case of independent random variables. Over the years, an analog of his result has been introduced in various contexts of analysis. Here, we introduce a similar LIL in the context of sums of Rademacher functions.","PeriodicalId":165940,"journal":{"name":"The Nepali Mathematical Sciences Report","volume":"127 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Upper Bound in a Law of the Iterated Logarithm for Rademacher Function\",\"authors\":\"Santosh Ghimire\",\"doi\":\"10.3126/nmsr.v39i2.51693\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"N. Kolmogorov introduced a law of the iterated logarithm, abbreviated LIL, in the case of independent random variables. Over the years, an analog of his result has been introduced in various contexts of analysis. Here, we introduce a similar LIL in the context of sums of Rademacher functions.\",\"PeriodicalId\":165940,\"journal\":{\"name\":\"The Nepali Mathematical Sciences Report\",\"volume\":\"127 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Nepali Mathematical Sciences Report\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3126/nmsr.v39i2.51693\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Nepali Mathematical Sciences Report","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3126/nmsr.v39i2.51693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
N. Kolmogorov在独立随机变量的情况下引入了迭代对数定律,缩写为LIL。多年来,在各种分析环境中引入了与他的结果类似的方法。这里,我们在Rademacher函数和的背景下引入一个类似的LIL。
An Upper Bound in a Law of the Iterated Logarithm for Rademacher Function
N. Kolmogorov introduced a law of the iterated logarithm, abbreviated LIL, in the case of independent random variables. Over the years, an analog of his result has been introduced in various contexts of analysis. Here, we introduce a similar LIL in the context of sums of Rademacher functions.