Rademacher函数迭代对数律的上界

Santosh Ghimire
{"title":"Rademacher函数迭代对数律的上界","authors":"Santosh Ghimire","doi":"10.3126/nmsr.v39i2.51693","DOIUrl":null,"url":null,"abstract":"N. Kolmogorov introduced a law of the iterated logarithm, abbreviated LIL, in the case of independent random variables. Over the years, an analog of his result has been introduced in various contexts of analysis. Here, we introduce a similar LIL in the context of sums of Rademacher functions.","PeriodicalId":165940,"journal":{"name":"The Nepali Mathematical Sciences Report","volume":"127 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Upper Bound in a Law of the Iterated Logarithm for Rademacher Function\",\"authors\":\"Santosh Ghimire\",\"doi\":\"10.3126/nmsr.v39i2.51693\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"N. Kolmogorov introduced a law of the iterated logarithm, abbreviated LIL, in the case of independent random variables. Over the years, an analog of his result has been introduced in various contexts of analysis. Here, we introduce a similar LIL in the context of sums of Rademacher functions.\",\"PeriodicalId\":165940,\"journal\":{\"name\":\"The Nepali Mathematical Sciences Report\",\"volume\":\"127 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Nepali Mathematical Sciences Report\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3126/nmsr.v39i2.51693\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Nepali Mathematical Sciences Report","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3126/nmsr.v39i2.51693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

N. Kolmogorov在独立随机变量的情况下引入了迭代对数定律,缩写为LIL。多年来,在各种分析环境中引入了与他的结果类似的方法。这里,我们在Rademacher函数和的背景下引入一个类似的LIL。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Upper Bound in a Law of the Iterated Logarithm for Rademacher Function
N. Kolmogorov introduced a law of the iterated logarithm, abbreviated LIL, in the case of independent random variables. Over the years, an analog of his result has been introduced in various contexts of analysis. Here, we introduce a similar LIL in the context of sums of Rademacher functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信