基于最优在线整定的自学习模糊神经网络(SLFNN)用于涡轮增压汽车注水控制

Chi-Hsu Wang, Jung-Sheng Wen
{"title":"基于最优在线整定的自学习模糊神经网络(SLFNN)用于涡轮增压汽车注水控制","authors":"Chi-Hsu Wang, Jung-Sheng Wen","doi":"10.1109/ICNSC.2005.1461308","DOIUrl":null,"url":null,"abstract":"This paper proposes a new architecture of self-learning fuzzy-neural-network (SLFNN) for water injection control in a turbo-charged automobile. The major advantage of SLFNN is that no off-line training is needed for initialization. The SLFNN will initialize itself with a random set of initial weighting factors (normally zeros) and a specifically designed on-line optimal training algorithm is invoked immediately after the engine of the automobile is turn on. The on-line optimal training can guarantee that the weighting factors will be directed toward a maximum-error-reduced direction. Although this SLFNN can also be used as a controller for fuel injection, we adopt the SLFNN as the water injection controller to reduce the knocking effects of a turbo-charged engine and therefore the emission is cleaner with less petrol consumption. Real implementation has been performed in a Saab NG 900 (1994 -1998) automobile with excellent results.","PeriodicalId":313251,"journal":{"name":"Proceedings. 2005 IEEE Networking, Sensing and Control, 2005.","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Self-learning FNN (SLFNN) with optimal on-line tuning for water injection control in a turbo charged automobile\",\"authors\":\"Chi-Hsu Wang, Jung-Sheng Wen\",\"doi\":\"10.1109/ICNSC.2005.1461308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new architecture of self-learning fuzzy-neural-network (SLFNN) for water injection control in a turbo-charged automobile. The major advantage of SLFNN is that no off-line training is needed for initialization. The SLFNN will initialize itself with a random set of initial weighting factors (normally zeros) and a specifically designed on-line optimal training algorithm is invoked immediately after the engine of the automobile is turn on. The on-line optimal training can guarantee that the weighting factors will be directed toward a maximum-error-reduced direction. Although this SLFNN can also be used as a controller for fuel injection, we adopt the SLFNN as the water injection controller to reduce the knocking effects of a turbo-charged engine and therefore the emission is cleaner with less petrol consumption. Real implementation has been performed in a Saab NG 900 (1994 -1998) automobile with excellent results.\",\"PeriodicalId\":313251,\"journal\":{\"name\":\"Proceedings. 2005 IEEE Networking, Sensing and Control, 2005.\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 2005 IEEE Networking, Sensing and Control, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNSC.2005.1461308\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 2005 IEEE Networking, Sensing and Control, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNSC.2005.1461308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种用于涡轮增压汽车注水控制的自学习模糊神经网络(SLFNN)结构。SLFNN的主要优点是初始化不需要离线训练。SLFNN将使用一组随机的初始加权因子(通常为零)初始化自身,并且在汽车发动机启动后立即调用专门设计的在线最优训练算法。在线最优训练可以保证权重因子向误差减小最大的方向运动。虽然该SLFNN也可以用作燃油喷射控制器,但我们采用SLFNN作为注水控制器来减少涡轮增压发动机的爆震效应,因此排放更清洁,汽油消耗更少。在Saab NG 900(1994 -1998)汽车上进行了实际实施,取得了良好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Self-learning FNN (SLFNN) with optimal on-line tuning for water injection control in a turbo charged automobile
This paper proposes a new architecture of self-learning fuzzy-neural-network (SLFNN) for water injection control in a turbo-charged automobile. The major advantage of SLFNN is that no off-line training is needed for initialization. The SLFNN will initialize itself with a random set of initial weighting factors (normally zeros) and a specifically designed on-line optimal training algorithm is invoked immediately after the engine of the automobile is turn on. The on-line optimal training can guarantee that the weighting factors will be directed toward a maximum-error-reduced direction. Although this SLFNN can also be used as a controller for fuel injection, we adopt the SLFNN as the water injection controller to reduce the knocking effects of a turbo-charged engine and therefore the emission is cleaner with less petrol consumption. Real implementation has been performed in a Saab NG 900 (1994 -1998) automobile with excellent results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信