{"title":"学习核函数的分类与小的训练样本","authors":"T. Hertz, Aharon Bar-Hillel, D. Weinshall","doi":"10.1145/1143844.1143895","DOIUrl":null,"url":null,"abstract":"When given a small sample, we show that classification with SVM can be considerably enhanced by using a kernel function learned from the training data prior to discrimination. This kernel is also shown to enhance retrieval based on data similarity. Specifically, we describe KernelBoost - a boosting algorithm which computes a kernel function as a combination of 'weak' space partitions. The kernel learning method naturally incorporates domain knowledge in the form of unlabeled data (i.e. in a semi-supervised or transductive settings), and also in the form of labeled samples from relevant related problems (i.e. in a learning-to-learn scenario). The latter goal is accomplished by learning a single kernel function for all classes. We show comparative evaluations of our method on datasets from the UCI repository. We demonstrate performance enhancement on two challenging tasks: digit classification with kernel SVM, and facial image retrieval based on image similarity as measured by the learnt kernel.","PeriodicalId":124011,"journal":{"name":"Proceedings of the 23rd international conference on Machine learning","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"87","resultStr":"{\"title\":\"Learning a kernel function for classification with small training samples\",\"authors\":\"T. Hertz, Aharon Bar-Hillel, D. Weinshall\",\"doi\":\"10.1145/1143844.1143895\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When given a small sample, we show that classification with SVM can be considerably enhanced by using a kernel function learned from the training data prior to discrimination. This kernel is also shown to enhance retrieval based on data similarity. Specifically, we describe KernelBoost - a boosting algorithm which computes a kernel function as a combination of 'weak' space partitions. The kernel learning method naturally incorporates domain knowledge in the form of unlabeled data (i.e. in a semi-supervised or transductive settings), and also in the form of labeled samples from relevant related problems (i.e. in a learning-to-learn scenario). The latter goal is accomplished by learning a single kernel function for all classes. We show comparative evaluations of our method on datasets from the UCI repository. We demonstrate performance enhancement on two challenging tasks: digit classification with kernel SVM, and facial image retrieval based on image similarity as measured by the learnt kernel.\",\"PeriodicalId\":124011,\"journal\":{\"name\":\"Proceedings of the 23rd international conference on Machine learning\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"87\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 23rd international conference on Machine learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1143844.1143895\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 23rd international conference on Machine learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1143844.1143895","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Learning a kernel function for classification with small training samples
When given a small sample, we show that classification with SVM can be considerably enhanced by using a kernel function learned from the training data prior to discrimination. This kernel is also shown to enhance retrieval based on data similarity. Specifically, we describe KernelBoost - a boosting algorithm which computes a kernel function as a combination of 'weak' space partitions. The kernel learning method naturally incorporates domain knowledge in the form of unlabeled data (i.e. in a semi-supervised or transductive settings), and also in the form of labeled samples from relevant related problems (i.e. in a learning-to-learn scenario). The latter goal is accomplished by learning a single kernel function for all classes. We show comparative evaluations of our method on datasets from the UCI repository. We demonstrate performance enhancement on two challenging tasks: digit classification with kernel SVM, and facial image retrieval based on image similarity as measured by the learnt kernel.