基于时间尺度修正和分段聚合逼近的时间序列增强人体动作识别

Mariusz Oszust, Dawid Warchoł
{"title":"基于时间尺度修正和分段聚合逼近的时间序列增强人体动作识别","authors":"Mariusz Oszust, Dawid Warchoł","doi":"10.1109/ICTAI56018.2022.00108","DOIUrl":null,"url":null,"abstract":"In this paper, a method for time series augmentation, aiming at the improvement of human action recognition accuracy of a deep learning classifier, is proposed. The approach performs time-scale modifications of the input time series and transforms them into compact sequences of time segments using Piecewise Aggregate Approximation (PAA) to facilitate the training of a neural network. The approach is compared against related methods on six representative datasets using Bidirectional Long Short-Term Memory (BiLSTM) classifier. It is shown that the resulting artificial time series lead to a better performance of the deep learning model than augmented data samples generated by popular approaches. The source code of the method is available at https://marosz.kia.prz.edu.pl/Adder.html.","PeriodicalId":354314,"journal":{"name":"2022 IEEE 34th International Conference on Tools with Artificial Intelligence (ICTAI)","volume":"94 1-2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time Series Augmentation with Time-Scale Modifications and Piecewise Aggregate Approximation for Human Action Recognition\",\"authors\":\"Mariusz Oszust, Dawid Warchoł\",\"doi\":\"10.1109/ICTAI56018.2022.00108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a method for time series augmentation, aiming at the improvement of human action recognition accuracy of a deep learning classifier, is proposed. The approach performs time-scale modifications of the input time series and transforms them into compact sequences of time segments using Piecewise Aggregate Approximation (PAA) to facilitate the training of a neural network. The approach is compared against related methods on six representative datasets using Bidirectional Long Short-Term Memory (BiLSTM) classifier. It is shown that the resulting artificial time series lead to a better performance of the deep learning model than augmented data samples generated by popular approaches. The source code of the method is available at https://marosz.kia.prz.edu.pl/Adder.html.\",\"PeriodicalId\":354314,\"journal\":{\"name\":\"2022 IEEE 34th International Conference on Tools with Artificial Intelligence (ICTAI)\",\"volume\":\"94 1-2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 34th International Conference on Tools with Artificial Intelligence (ICTAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTAI56018.2022.00108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 34th International Conference on Tools with Artificial Intelligence (ICTAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI56018.2022.00108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对深度学习分类器对人体动作识别精度的提高,提出了一种时间序列增强方法。该方法对输入时间序列进行时间尺度修改,并使用分段聚合近似(PAA)将其转换为紧凑的时间片段序列,以方便神经网络的训练。利用双向长短期记忆(BiLSTM)分类器在6个具有代表性的数据集上与相关方法进行了比较。结果表明,由此产生的人工时间序列比常用方法生成的增强数据样本具有更好的深度学习模型性能。该方法的源代码可从https://marosz.kia.prz.edu.pl/Adder.html获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Time Series Augmentation with Time-Scale Modifications and Piecewise Aggregate Approximation for Human Action Recognition
In this paper, a method for time series augmentation, aiming at the improvement of human action recognition accuracy of a deep learning classifier, is proposed. The approach performs time-scale modifications of the input time series and transforms them into compact sequences of time segments using Piecewise Aggregate Approximation (PAA) to facilitate the training of a neural network. The approach is compared against related methods on six representative datasets using Bidirectional Long Short-Term Memory (BiLSTM) classifier. It is shown that the resulting artificial time series lead to a better performance of the deep learning model than augmented data samples generated by popular approaches. The source code of the method is available at https://marosz.kia.prz.edu.pl/Adder.html.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信