通过软硬件协同设计选择语言模型特征

Vlad Pandelea, E. Ragusa, P. Gastaldo, E. Cambria
{"title":"通过软硬件协同设计选择语言模型特征","authors":"Vlad Pandelea, E. Ragusa, P. Gastaldo, E. Cambria","doi":"10.1109/ICASSP49357.2023.10097191","DOIUrl":null,"url":null,"abstract":"The availability of new datasets and deep learning techniques have led to a surge of effort directed towards the creation of new models that can exploit the large amount of data. However, little attention has been given to the development of models that are not only accurate, but also suitable for user-specific use or geared towards resource-constrained devices. Fine-tuning deep models on edge devices is impractical and, often, user customization stands on the sub-optimal feature-extractor/classifier paradigm. Here, we propose a method to fully utilize the intermediate outputs of the popular large pre-trained models in natural language processing when used as frozen feature extractors, and further close the gap between their fine-tuning and more computationally efficient solutions. We reach this goal exploiting the concept of software-hardware co-design and propose a methodical procedure, inspired by Neural Architecture Search, to select the most desirable model taking into consideration application constraints.","PeriodicalId":113072,"journal":{"name":"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Selecting Language Models Features VIA Software-Hardware Co-Design\",\"authors\":\"Vlad Pandelea, E. Ragusa, P. Gastaldo, E. Cambria\",\"doi\":\"10.1109/ICASSP49357.2023.10097191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The availability of new datasets and deep learning techniques have led to a surge of effort directed towards the creation of new models that can exploit the large amount of data. However, little attention has been given to the development of models that are not only accurate, but also suitable for user-specific use or geared towards resource-constrained devices. Fine-tuning deep models on edge devices is impractical and, often, user customization stands on the sub-optimal feature-extractor/classifier paradigm. Here, we propose a method to fully utilize the intermediate outputs of the popular large pre-trained models in natural language processing when used as frozen feature extractors, and further close the gap between their fine-tuning and more computationally efficient solutions. We reach this goal exploiting the concept of software-hardware co-design and propose a methodical procedure, inspired by Neural Architecture Search, to select the most desirable model taking into consideration application constraints.\",\"PeriodicalId\":113072,\"journal\":{\"name\":\"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP49357.2023.10097191\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP49357.2023.10097191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

新数据集和深度学习技术的可用性导致了针对创建可以利用大量数据的新模型的努力激增。然而,很少注意开发不仅准确,而且适合用户特定使用或面向资源受限设备的模型。在边缘设备上微调深度模型是不切实际的,而且用户自定义通常基于次优特征提取器/分类器范例。在此,我们提出了一种方法,充分利用自然语言处理中流行的大型预训练模型的中间输出作为冻结特征提取器,并进一步缩小其微调与计算效率更高的解决方案之间的差距。为了实现这一目标,我们利用软硬件协同设计的概念,并在神经架构搜索的启发下提出了一个系统的过程,在考虑应用约束的情况下选择最理想的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Selecting Language Models Features VIA Software-Hardware Co-Design
The availability of new datasets and deep learning techniques have led to a surge of effort directed towards the creation of new models that can exploit the large amount of data. However, little attention has been given to the development of models that are not only accurate, but also suitable for user-specific use or geared towards resource-constrained devices. Fine-tuning deep models on edge devices is impractical and, often, user customization stands on the sub-optimal feature-extractor/classifier paradigm. Here, we propose a method to fully utilize the intermediate outputs of the popular large pre-trained models in natural language processing when used as frozen feature extractors, and further close the gap between their fine-tuning and more computationally efficient solutions. We reach this goal exploiting the concept of software-hardware co-design and propose a methodical procedure, inspired by Neural Architecture Search, to select the most desirable model taking into consideration application constraints.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信