路径模式:分析和比较真实和模拟人群

He Wang, Jan Ondřej, C. O'Sullivan
{"title":"路径模式:分析和比较真实和模拟人群","authors":"He Wang, Jan Ondřej, C. O'Sullivan","doi":"10.1145/2856400.2856410","DOIUrl":null,"url":null,"abstract":"Crowd simulation has been an active and important area of research in the field of interactive 3D graphics for several decades. However, only recently has there been an increased focus on evaluating the fidelity of the results with respect to real-world situations. The focus to date has been on analyzing the properties of low-level features such as pedestrian trajectories, or global features such as crowd densities. We propose a new approach based on finding latent Path Patterns in both real and simulated data in order to analyze and compare them. Unsupervised clustering by non-parametric Bayesian inference is used to learn the patterns, which themselves provide a rich visualization of the crowd's behaviour. To this end, we present a new Stochastic Variational Dual Hierarchical Dirichlet Process (SV-DHDP) model. The fidelity of the patterns is then computed with respect to a reference, thus allowing the outputs of different algorithms to be compared with each other and/or with real data accordingly.","PeriodicalId":207863,"journal":{"name":"Proceedings of the 20th ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"Path patterns: analyzing and comparing real and simulated crowds\",\"authors\":\"He Wang, Jan Ondřej, C. O'Sullivan\",\"doi\":\"10.1145/2856400.2856410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Crowd simulation has been an active and important area of research in the field of interactive 3D graphics for several decades. However, only recently has there been an increased focus on evaluating the fidelity of the results with respect to real-world situations. The focus to date has been on analyzing the properties of low-level features such as pedestrian trajectories, or global features such as crowd densities. We propose a new approach based on finding latent Path Patterns in both real and simulated data in order to analyze and compare them. Unsupervised clustering by non-parametric Bayesian inference is used to learn the patterns, which themselves provide a rich visualization of the crowd's behaviour. To this end, we present a new Stochastic Variational Dual Hierarchical Dirichlet Process (SV-DHDP) model. The fidelity of the patterns is then computed with respect to a reference, thus allowing the outputs of different algorithms to be compared with each other and/or with real data accordingly.\",\"PeriodicalId\":207863,\"journal\":{\"name\":\"Proceedings of the 20th ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 20th ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2856400.2856410\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2856400.2856410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

摘要

几十年来,人群模拟一直是交互式三维图形学领域一个活跃而重要的研究领域。然而,直到最近才有越来越多的人关注评估结果与现实世界情况的保真度。迄今为止,研究的重点是分析行人轨迹等低级特征的特性,或人群密度等全局特征。我们提出了一种基于在真实数据和模拟数据中寻找潜在路径模式的新方法,以便对它们进行分析和比较。使用非参数贝叶斯推理的无监督聚类来学习模式,这些模式本身提供了人群行为的丰富可视化。为此,我们提出了一个新的随机变分对偶层次狄利克雷过程(SV-DHDP)模型。然后根据参考计算模式的保真度,从而允许不同算法的输出相互比较和/或与实际数据进行相应的比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Path patterns: analyzing and comparing real and simulated crowds
Crowd simulation has been an active and important area of research in the field of interactive 3D graphics for several decades. However, only recently has there been an increased focus on evaluating the fidelity of the results with respect to real-world situations. The focus to date has been on analyzing the properties of low-level features such as pedestrian trajectories, or global features such as crowd densities. We propose a new approach based on finding latent Path Patterns in both real and simulated data in order to analyze and compare them. Unsupervised clustering by non-parametric Bayesian inference is used to learn the patterns, which themselves provide a rich visualization of the crowd's behaviour. To this end, we present a new Stochastic Variational Dual Hierarchical Dirichlet Process (SV-DHDP) model. The fidelity of the patterns is then computed with respect to a reference, thus allowing the outputs of different algorithms to be compared with each other and/or with real data accordingly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信