利用HMM聚类学习监控视频中的运动模式

E. Swears, A. Hoogs, A. Perera
{"title":"利用HMM聚类学习监控视频中的运动模式","authors":"E. Swears, A. Hoogs, A. Perera","doi":"10.1109/WMVC.2008.4544063","DOIUrl":null,"url":null,"abstract":"We present a novel approach to learning motion behavior in video, and detecting abnormal behavior, using hierarchical clustering of hidden Markov models (HMMs). A continuous stream of track data is used for online and on-demand creation and training of HMMs, where tracks may be of highly variable length and scenes may be very complex with an unknown number of motion patterns. We show how these HMMs can be used for on-line clustering of tracks that represent normal behavior and for detection of deviant tracks. The track clustering algorithm uses a hierarchical agglomerative HMM clustering technique that jointly determines all the HMM parameters (including the number of states) via an expectation maximization (EM) algorithm and the Akaike information criteria. Results are demonstrated on a highly complex scene containing dozens of routes, significant occlusions and hundreds of moving objects.","PeriodicalId":150666,"journal":{"name":"2008 IEEE Workshop on Motion and video Computing","volume":"123 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":"{\"title\":\"Learning Motion Patterns in Surveillance Video using HMM Clustering\",\"authors\":\"E. Swears, A. Hoogs, A. Perera\",\"doi\":\"10.1109/WMVC.2008.4544063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel approach to learning motion behavior in video, and detecting abnormal behavior, using hierarchical clustering of hidden Markov models (HMMs). A continuous stream of track data is used for online and on-demand creation and training of HMMs, where tracks may be of highly variable length and scenes may be very complex with an unknown number of motion patterns. We show how these HMMs can be used for on-line clustering of tracks that represent normal behavior and for detection of deviant tracks. The track clustering algorithm uses a hierarchical agglomerative HMM clustering technique that jointly determines all the HMM parameters (including the number of states) via an expectation maximization (EM) algorithm and the Akaike information criteria. Results are demonstrated on a highly complex scene containing dozens of routes, significant occlusions and hundreds of moving objects.\",\"PeriodicalId\":150666,\"journal\":{\"name\":\"2008 IEEE Workshop on Motion and video Computing\",\"volume\":\"123 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"47\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE Workshop on Motion and video Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WMVC.2008.4544063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Workshop on Motion and video Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WMVC.2008.4544063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47

摘要

我们提出了一种新的方法来学习视频中的运动行为,并利用隐马尔可夫模型(hmm)的层次聚类来检测异常行为。连续的轨道数据流用于在线和按需创建和训练hmm,其中轨道可能具有高度可变的长度,场景可能非常复杂,具有未知数量的运动模式。我们展示了这些hmm如何用于表示正常行为的轨迹的在线聚类和异常轨迹的检测。轨迹聚类算法采用层次聚类HMM聚类技术,通过期望最大化算法和赤池信息准则共同确定所有HMM参数(包括状态数)。结果在包含数十条路线,显著遮挡和数百个移动物体的高度复杂场景中进行演示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning Motion Patterns in Surveillance Video using HMM Clustering
We present a novel approach to learning motion behavior in video, and detecting abnormal behavior, using hierarchical clustering of hidden Markov models (HMMs). A continuous stream of track data is used for online and on-demand creation and training of HMMs, where tracks may be of highly variable length and scenes may be very complex with an unknown number of motion patterns. We show how these HMMs can be used for on-line clustering of tracks that represent normal behavior and for detection of deviant tracks. The track clustering algorithm uses a hierarchical agglomerative HMM clustering technique that jointly determines all the HMM parameters (including the number of states) via an expectation maximization (EM) algorithm and the Akaike information criteria. Results are demonstrated on a highly complex scene containing dozens of routes, significant occlusions and hundreds of moving objects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信