一种新的基于贝叶斯不确定性约简的时间序列编码器-解码器结构

Ricardo Xavier Llugsi Cañar, S. Yacoubi, Allyx Fontaine, P. Lupera
{"title":"一种新的基于贝叶斯不确定性约简的时间序列编码器-解码器结构","authors":"Ricardo Xavier Llugsi Cañar, S. Yacoubi, Allyx Fontaine, P. Lupera","doi":"10.1109/LA-CCI48322.2021.9769850","DOIUrl":null,"url":null,"abstract":"In the present work, a novel Convolutional LSTM Encoder-Decoder structure for the implementation of Weather Forecast for the Andean city of Quito is presented. Aside from the above, the Encoder-Decoder structure uses a Walk-Forward validation, an adjustment of the Bayesian posterior predictive distribution and the ADAMW optimizer to carry out the forecast. The aforementioned stages are combined to obtain 4 error metrics per hour. The prediction is done in base of acquired data from a network of Automatic Weather Stations. The results show that the Convolutional Encoder-Decoder structure with a dropout probability of 0.05 and a model precision equal to 0.1 performs better than a LSTM model, LSTM Stacked model or ARIMA models reaching a maximum error of 1.03 °C. Finally, the methodology could be applied as an effective option to implement the post-processing stage for the physical model of a Weather Forecast System.","PeriodicalId":431041,"journal":{"name":"2021 IEEE Latin American Conference on Computational Intelligence (LA-CCI)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A novel Encoder-Decoder structure for Time Series analysis based on Bayesian Uncertainty reduction\",\"authors\":\"Ricardo Xavier Llugsi Cañar, S. Yacoubi, Allyx Fontaine, P. Lupera\",\"doi\":\"10.1109/LA-CCI48322.2021.9769850\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present work, a novel Convolutional LSTM Encoder-Decoder structure for the implementation of Weather Forecast for the Andean city of Quito is presented. Aside from the above, the Encoder-Decoder structure uses a Walk-Forward validation, an adjustment of the Bayesian posterior predictive distribution and the ADAMW optimizer to carry out the forecast. The aforementioned stages are combined to obtain 4 error metrics per hour. The prediction is done in base of acquired data from a network of Automatic Weather Stations. The results show that the Convolutional Encoder-Decoder structure with a dropout probability of 0.05 and a model precision equal to 0.1 performs better than a LSTM model, LSTM Stacked model or ARIMA models reaching a maximum error of 1.03 °C. Finally, the methodology could be applied as an effective option to implement the post-processing stage for the physical model of a Weather Forecast System.\",\"PeriodicalId\":431041,\"journal\":{\"name\":\"2021 IEEE Latin American Conference on Computational Intelligence (LA-CCI)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Latin American Conference on Computational Intelligence (LA-CCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LA-CCI48322.2021.9769850\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Latin American Conference on Computational Intelligence (LA-CCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LA-CCI48322.2021.9769850","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在目前的工作中,提出了一种新的卷积LSTM编码器-解码器结构,用于实现安第斯山脉城市基多的天气预报。除此之外,编码器-解码器结构还使用了Walk-Forward验证、Bayesian后验预测分布的调整和ADAMW优化器来进行预测。将上述阶段结合起来,每小时可获得4个误差指标。预报是根据自动气象站网络采集的数据进行的。结果表明,该结构的丢包概率为0.05,模型精度为0.1,优于LSTM模型、LSTM堆叠模型或ARIMA模型,最大误差为1.03°C。最后,该方法可作为实施天气预报系统物理模型后处理阶段的有效选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel Encoder-Decoder structure for Time Series analysis based on Bayesian Uncertainty reduction
In the present work, a novel Convolutional LSTM Encoder-Decoder structure for the implementation of Weather Forecast for the Andean city of Quito is presented. Aside from the above, the Encoder-Decoder structure uses a Walk-Forward validation, an adjustment of the Bayesian posterior predictive distribution and the ADAMW optimizer to carry out the forecast. The aforementioned stages are combined to obtain 4 error metrics per hour. The prediction is done in base of acquired data from a network of Automatic Weather Stations. The results show that the Convolutional Encoder-Decoder structure with a dropout probability of 0.05 and a model precision equal to 0.1 performs better than a LSTM model, LSTM Stacked model or ARIMA models reaching a maximum error of 1.03 °C. Finally, the methodology could be applied as an effective option to implement the post-processing stage for the physical model of a Weather Forecast System.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信