基于萤火虫算法的改进gSVM-SCADL2信息基因和路径识别

Weng Howe Chan, M. S. Mohamad, S. Deris, J. Corchado, S. Omatu, Z. Ibrahim, S. Kasim
{"title":"基于萤火虫算法的改进gSVM-SCADL2信息基因和路径识别","authors":"Weng Howe Chan, M. S. Mohamad, S. Deris, J. Corchado, S. Omatu, Z. Ibrahim, S. Kasim","doi":"10.1504/IJBRA.2016.075404","DOIUrl":null,"url":null,"abstract":"Incorporation of pathway knowledge into microarray analysis has been favoured by researchers owing to the improved biological interpretation of the analysis outcome. However, most of the pathway data are manually curated without specific biological context. Inclusion of non-informative genes in the analysis of context specific microarray data could lead to classifier with poor discriminative power. Thus, one of the main challenges is how to effectively identify informative genes from the pathway data. This paper proposes a firefly optimised penalised support vector machine with SCADL2 penalty function SVM-SCADL2-FFA in optimising tuning parameters for each pathway for efficient identification of informative genes and pathways. Experiments are done on lung cancer and gender data sets. Tenfold CV is used to evaluate the performance in terms of accuracy, specificity, sensitivity and F-score. The identified informative genes are validated through online databases. Our proposed method shows consistent improvements compared to previous works.","PeriodicalId":434900,"journal":{"name":"Int. J. Bioinform. Res. Appl.","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"An improved gSVM-SCADL2 with firefly algorithm for identification of informative genes and pathways\",\"authors\":\"Weng Howe Chan, M. S. Mohamad, S. Deris, J. Corchado, S. Omatu, Z. Ibrahim, S. Kasim\",\"doi\":\"10.1504/IJBRA.2016.075404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Incorporation of pathway knowledge into microarray analysis has been favoured by researchers owing to the improved biological interpretation of the analysis outcome. However, most of the pathway data are manually curated without specific biological context. Inclusion of non-informative genes in the analysis of context specific microarray data could lead to classifier with poor discriminative power. Thus, one of the main challenges is how to effectively identify informative genes from the pathway data. This paper proposes a firefly optimised penalised support vector machine with SCADL2 penalty function SVM-SCADL2-FFA in optimising tuning parameters for each pathway for efficient identification of informative genes and pathways. Experiments are done on lung cancer and gender data sets. Tenfold CV is used to evaluate the performance in terms of accuracy, specificity, sensitivity and F-score. The identified informative genes are validated through online databases. Our proposed method shows consistent improvements compared to previous works.\",\"PeriodicalId\":434900,\"journal\":{\"name\":\"Int. J. Bioinform. Res. Appl.\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Bioinform. Res. Appl.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJBRA.2016.075404\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Bioinform. Res. Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJBRA.2016.075404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

由于改进了对分析结果的生物学解释,将途径知识纳入微阵列分析受到了研究人员的青睐。然而,大多数通路数据都是在没有特定生物学背景的情况下手工整理的。在特定环境的微阵列数据分析中包含非信息性基因可能导致分类器的鉴别能力差。因此,主要的挑战之一是如何有效地从途径数据中识别信息基因。本文提出了一种具有SCADL2惩罚函数SVM-SCADL2-FFA的萤火虫优化惩罚支持向量机,用于优化每条通路的调谐参数,从而有效地识别信息基因和通路。在肺癌和性别数据集上进行了实验。采用十倍CV从准确性、特异性、敏感性和f评分等方面评价其表现。鉴定的信息基因通过在线数据库进行验证。与以前的研究相比,我们提出的方法显示出持续的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An improved gSVM-SCADL2 with firefly algorithm for identification of informative genes and pathways
Incorporation of pathway knowledge into microarray analysis has been favoured by researchers owing to the improved biological interpretation of the analysis outcome. However, most of the pathway data are manually curated without specific biological context. Inclusion of non-informative genes in the analysis of context specific microarray data could lead to classifier with poor discriminative power. Thus, one of the main challenges is how to effectively identify informative genes from the pathway data. This paper proposes a firefly optimised penalised support vector machine with SCADL2 penalty function SVM-SCADL2-FFA in optimising tuning parameters for each pathway for efficient identification of informative genes and pathways. Experiments are done on lung cancer and gender data sets. Tenfold CV is used to evaluate the performance in terms of accuracy, specificity, sensitivity and F-score. The identified informative genes are validated through online databases. Our proposed method shows consistent improvements compared to previous works.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信