PerfSig:通过多模态因果分析提取性能缺陷签名

Jingzhu He, ShanghaiTech, Chin-Chia Michael Yeh
{"title":"PerfSig:通过多模态因果分析提取性能缺陷签名","authors":"Jingzhu He, ShanghaiTech, Chin-Chia Michael Yeh","doi":"10.1145/3510003.3510110","DOIUrl":null,"url":null,"abstract":"Diagnosing a performance bug triggered in production cloud environments is notoriously challenging. Extracting performance bug signatures can help cloud operators quickly pinpoint the problem and avoid repeating manual efforts for diagnosing similar performance bugs. In this paper, we present PerfSig, a multi-modality performance bug signature extraction tool which can identify principal anomaly patterns and root cause functions for performance bugs. PerfSig performs fine-grained anomaly detection over various machine data such as system metrics, system logs, and function call traces. We then conduct causal analysis across different machine data using information theory method to pinpoint the root cause function of a performance bug. PerfSig generates bug signatures as the combination of the identified anomaly patterns and root cause functions. We have implemented a prototype of PerfSig and conducted evaluation using 20 real world performance bugs in six commonly used cloud systems. Our experimental results show that PerfSig captures various kinds of fine-grained anomaly patterns from different machine data and successfully identifies the root cause functions through multi-modality causal analysis for 19 out of 20 tested performance bugs.","PeriodicalId":202896,"journal":{"name":"2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE)","volume":"135 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"PerfSig: Extracting Performance Bug Signatures via Multi-modality Causal Analysis\",\"authors\":\"Jingzhu He, ShanghaiTech, Chin-Chia Michael Yeh\",\"doi\":\"10.1145/3510003.3510110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diagnosing a performance bug triggered in production cloud environments is notoriously challenging. Extracting performance bug signatures can help cloud operators quickly pinpoint the problem and avoid repeating manual efforts for diagnosing similar performance bugs. In this paper, we present PerfSig, a multi-modality performance bug signature extraction tool which can identify principal anomaly patterns and root cause functions for performance bugs. PerfSig performs fine-grained anomaly detection over various machine data such as system metrics, system logs, and function call traces. We then conduct causal analysis across different machine data using information theory method to pinpoint the root cause function of a performance bug. PerfSig generates bug signatures as the combination of the identified anomaly patterns and root cause functions. We have implemented a prototype of PerfSig and conducted evaluation using 20 real world performance bugs in six commonly used cloud systems. Our experimental results show that PerfSig captures various kinds of fine-grained anomaly patterns from different machine data and successfully identifies the root cause functions through multi-modality causal analysis for 19 out of 20 tested performance bugs.\",\"PeriodicalId\":202896,\"journal\":{\"name\":\"2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE)\",\"volume\":\"135 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3510003.3510110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3510003.3510110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

诊断在生产云环境中触发的性能错误是非常具有挑战性的。提取性能缺陷签名可以帮助云操作人员快速查明问题,避免重复手动诊断类似的性能缺陷。在本文中,我们提出了PerfSig,一个多模态的性能缺陷签名提取工具,它可以识别性能缺陷的主要异常模式和根本原因函数。PerfSig对各种机器数据(如系统指标、系统日志和函数调用跟踪)执行细粒度异常检测。然后,我们使用信息论方法对不同的机器数据进行因果分析,以查明性能缺陷的根本原因函数。PerfSig生成错误签名,作为已识别的异常模式和根本原因函数的组合。我们已经实现了PerfSig的原型,并在六个常用的云系统中使用20个真实的性能错误进行了评估。我们的实验结果表明,PerfSig从不同的机器数据中捕获了各种细粒度的异常模式,并通过多模态因果分析成功地识别了20个测试性能错误中的19个的根本原因函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PerfSig: Extracting Performance Bug Signatures via Multi-modality Causal Analysis
Diagnosing a performance bug triggered in production cloud environments is notoriously challenging. Extracting performance bug signatures can help cloud operators quickly pinpoint the problem and avoid repeating manual efforts for diagnosing similar performance bugs. In this paper, we present PerfSig, a multi-modality performance bug signature extraction tool which can identify principal anomaly patterns and root cause functions for performance bugs. PerfSig performs fine-grained anomaly detection over various machine data such as system metrics, system logs, and function call traces. We then conduct causal analysis across different machine data using information theory method to pinpoint the root cause function of a performance bug. PerfSig generates bug signatures as the combination of the identified anomaly patterns and root cause functions. We have implemented a prototype of PerfSig and conducted evaluation using 20 real world performance bugs in six commonly used cloud systems. Our experimental results show that PerfSig captures various kinds of fine-grained anomaly patterns from different machine data and successfully identifies the root cause functions through multi-modality causal analysis for 19 out of 20 tested performance bugs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信