{"title":"定义实变量实函数的连续性","authors":"J F Harper","doi":"10.1080/17498430.2015.1116053","DOIUrl":null,"url":null,"abstract":"Continuity of a real function of a real variable has been defined in various ways over almost 200 years. Contrary to popular belief, the definitions are not all equivalent, because their consequences for four somewhat pathological functions reveal five essentially different cases. The four defensible ones imply just two cases for continuity on an interval if that is defined by using pointwise continuity at each point. Some authors had trouble: two different textbooks each gave two arguably inconsistent definitions, three more changed their definitions in their second editions, two more claimed continuity at a point for functions not defined there, and one gave a definition implying it for a function with no limit there.","PeriodicalId":211442,"journal":{"name":"BSHM Bulletin: Journal of the British Society for the History of Mathematics","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Defining continuity of real functions of real variables\",\"authors\":\"J F Harper\",\"doi\":\"10.1080/17498430.2015.1116053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Continuity of a real function of a real variable has been defined in various ways over almost 200 years. Contrary to popular belief, the definitions are not all equivalent, because their consequences for four somewhat pathological functions reveal five essentially different cases. The four defensible ones imply just two cases for continuity on an interval if that is defined by using pointwise continuity at each point. Some authors had trouble: two different textbooks each gave two arguably inconsistent definitions, three more changed their definitions in their second editions, two more claimed continuity at a point for functions not defined there, and one gave a definition implying it for a function with no limit there.\",\"PeriodicalId\":211442,\"journal\":{\"name\":\"BSHM Bulletin: Journal of the British Society for the History of Mathematics\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BSHM Bulletin: Journal of the British Society for the History of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/17498430.2015.1116053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BSHM Bulletin: Journal of the British Society for the History of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17498430.2015.1116053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Defining continuity of real functions of real variables
Continuity of a real function of a real variable has been defined in various ways over almost 200 years. Contrary to popular belief, the definitions are not all equivalent, because their consequences for four somewhat pathological functions reveal five essentially different cases. The four defensible ones imply just two cases for continuity on an interval if that is defined by using pointwise continuity at each point. Some authors had trouble: two different textbooks each gave two arguably inconsistent definitions, three more changed their definitions in their second editions, two more claimed continuity at a point for functions not defined there, and one gave a definition implying it for a function with no limit there.