基于xgboost的Android恶意软件检测

Jiong Wang, Boquan Li, Yuwei Zeng
{"title":"基于xgboost的Android恶意软件检测","authors":"Jiong Wang, Boquan Li, Yuwei Zeng","doi":"10.1109/CIS.2017.00065","DOIUrl":null,"url":null,"abstract":"Malware remains the most significant security threat to smartphones in spite of the constantly upgrading of the system. In this paper, we introduce an Android malware detection method based on XGBoost model. We subsequently discuss the effect of feature selection on the classification. In the end, we verify the high efficacy and good accuracy of this model through the experiment, which achieves similar results to the SVM while spending less time.","PeriodicalId":304958,"journal":{"name":"2017 13th International Conference on Computational Intelligence and Security (CIS)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"XGBoost-Based Android Malware Detection\",\"authors\":\"Jiong Wang, Boquan Li, Yuwei Zeng\",\"doi\":\"10.1109/CIS.2017.00065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Malware remains the most significant security threat to smartphones in spite of the constantly upgrading of the system. In this paper, we introduce an Android malware detection method based on XGBoost model. We subsequently discuss the effect of feature selection on the classification. In the end, we verify the high efficacy and good accuracy of this model through the experiment, which achieves similar results to the SVM while spending less time.\",\"PeriodicalId\":304958,\"journal\":{\"name\":\"2017 13th International Conference on Computational Intelligence and Security (CIS)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 13th International Conference on Computational Intelligence and Security (CIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIS.2017.00065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 13th International Conference on Computational Intelligence and Security (CIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIS.2017.00065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

尽管智能手机系统不断升级,但恶意软件仍然是智能手机最大的安全威胁。本文介绍了一种基于XGBoost模型的Android恶意软件检测方法。我们随后讨论了特征选择对分类的影响。最后,我们通过实验验证了该模型的高效率和良好的准确性,在较少的时间内获得了与SVM相似的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
XGBoost-Based Android Malware Detection
Malware remains the most significant security threat to smartphones in spite of the constantly upgrading of the system. In this paper, we introduce an Android malware detection method based on XGBoost model. We subsequently discuss the effect of feature selection on the classification. In the end, we verify the high efficacy and good accuracy of this model through the experiment, which achieves similar results to the SVM while spending less time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信