求解所有飞行状态下特征问题的气动弹性代码的再工程

M. Lesoinne, C. Farhat
{"title":"求解所有飞行状态下特征问题的气动弹性代码的再工程","authors":"M. Lesoinne, C. Farhat","doi":"10.1115/imece1997-0171","DOIUrl":null,"url":null,"abstract":"\n We describe a new method for computing an arbitrary number of eigen solutions of a given aeroelastic problem. The proposed method is based on the re-engineering of a three-way coupled formulation previously developed for the solution in the time domain of nonlinear transient aeroelastic problems. It is applicable in subsonic, transonic, and supersonic flow regimes, and independently from the frequency or damping level of the target aeroelastic modes. It is based on the computation of the complex eigen solution of a carefully linearized fluid/structure interaction problem, and relies on the inverse orthogonal iteration algorithm. We illustrate this method with the stability analysis of a flat panel with infinite aspect ratio in supersonic airstreams and the AGARD 445.6 aeroelastic wing. For these aeroelastic problems, we show that the results produced by the proposed eigen solution method are in excellent agreement with those predicted analytically and numerically as well as with experimental data.","PeriodicalId":166345,"journal":{"name":"4th International Symposium on Fluid-Structure Interactions, Aeroelasticity, Flow-Induced Vibration and Noise: Volume III","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Re-Engineering of an Aeroelastic Code for Solving Eigen Problems in All Flight Regimes\",\"authors\":\"M. Lesoinne, C. Farhat\",\"doi\":\"10.1115/imece1997-0171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n We describe a new method for computing an arbitrary number of eigen solutions of a given aeroelastic problem. The proposed method is based on the re-engineering of a three-way coupled formulation previously developed for the solution in the time domain of nonlinear transient aeroelastic problems. It is applicable in subsonic, transonic, and supersonic flow regimes, and independently from the frequency or damping level of the target aeroelastic modes. It is based on the computation of the complex eigen solution of a carefully linearized fluid/structure interaction problem, and relies on the inverse orthogonal iteration algorithm. We illustrate this method with the stability analysis of a flat panel with infinite aspect ratio in supersonic airstreams and the AGARD 445.6 aeroelastic wing. For these aeroelastic problems, we show that the results produced by the proposed eigen solution method are in excellent agreement with those predicted analytically and numerically as well as with experimental data.\",\"PeriodicalId\":166345,\"journal\":{\"name\":\"4th International Symposium on Fluid-Structure Interactions, Aeroelasticity, Flow-Induced Vibration and Noise: Volume III\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"4th International Symposium on Fluid-Structure Interactions, Aeroelasticity, Flow-Induced Vibration and Noise: Volume III\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece1997-0171\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"4th International Symposium on Fluid-Structure Interactions, Aeroelasticity, Flow-Induced Vibration and Noise: Volume III","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece1997-0171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文描述了一种计算给定气动弹性问题任意数目本征解的新方法。所提出的方法是基于先前为求解非线性瞬态气动弹性问题而开发的三向耦合公式的重新设计。它适用于亚音速、跨音速和超声速流态,并且独立于目标气动弹性模态的频率或阻尼水平。它是基于一个仔细线性化的流体/结构相互作用问题的复特征解的计算,并依赖于逆正交迭代算法。以无限展弦比平板在超声速气流中的稳定性分析和AGARD 445.6气动弹性机翼为例,说明了该方法的可行性。对于这些气动弹性问题,我们表明所提出的本征解方法的结果与解析和数值预测以及与实验数据非常吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Re-Engineering of an Aeroelastic Code for Solving Eigen Problems in All Flight Regimes
We describe a new method for computing an arbitrary number of eigen solutions of a given aeroelastic problem. The proposed method is based on the re-engineering of a three-way coupled formulation previously developed for the solution in the time domain of nonlinear transient aeroelastic problems. It is applicable in subsonic, transonic, and supersonic flow regimes, and independently from the frequency or damping level of the target aeroelastic modes. It is based on the computation of the complex eigen solution of a carefully linearized fluid/structure interaction problem, and relies on the inverse orthogonal iteration algorithm. We illustrate this method with the stability analysis of a flat panel with infinite aspect ratio in supersonic airstreams and the AGARD 445.6 aeroelastic wing. For these aeroelastic problems, we show that the results produced by the proposed eigen solution method are in excellent agreement with those predicted analytically and numerically as well as with experimental data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信