多多项式结果的gelfund - mahler不等式

Aleksandra Gala-Jaskórzynska, K. Kurdyka, K. Rudnicka, S. Spodzieja
{"title":"多多项式结果的gelfund - mahler不等式","authors":"Aleksandra Gala-Jaskórzynska, K. Kurdyka, K. Rudnicka, S. Spodzieja","doi":"10.18778/8142-814-9.07","DOIUrl":null,"url":null,"abstract":"We give a bound of the height of a multipolynomial resultant in terms of polynomial degrees, the resultant of which applies. Additionally we give a Gelfond-Mahler type bound of the height of homogeneous divisors of a homogeneous polynomial.","PeriodicalId":273656,"journal":{"name":"Analytic and Algebraic Geometry 3","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gelfond-Mahler inequality for multipolynomial resultants\",\"authors\":\"Aleksandra Gala-Jaskórzynska, K. Kurdyka, K. Rudnicka, S. Spodzieja\",\"doi\":\"10.18778/8142-814-9.07\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give a bound of the height of a multipolynomial resultant in terms of polynomial degrees, the resultant of which applies. Additionally we give a Gelfond-Mahler type bound of the height of homogeneous divisors of a homogeneous polynomial.\",\"PeriodicalId\":273656,\"journal\":{\"name\":\"Analytic and Algebraic Geometry 3\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytic and Algebraic Geometry 3\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18778/8142-814-9.07\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytic and Algebraic Geometry 3","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18778/8142-814-9.07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们用多项式的度数给出了一个多多项式结式的高度界,它的乘积适用。此外,我们给出了齐次多项式的齐次因子高度的gelfund - mahler型界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gelfond-Mahler inequality for multipolynomial resultants
We give a bound of the height of a multipolynomial resultant in terms of polynomial degrees, the resultant of which applies. Additionally we give a Gelfond-Mahler type bound of the height of homogeneous divisors of a homogeneous polynomial.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信