利用SVM检测Twitter上的恐怖威胁

K. Bedjou, F. Azouaou, Abdelouhab Aloui
{"title":"利用SVM检测Twitter上的恐怖威胁","authors":"K. Bedjou, F. Azouaou, Abdelouhab Aloui","doi":"10.1145/3341325.3342011","DOIUrl":null,"url":null,"abstract":"Many people are exposed daily to different forms of terrorist threats on social networks, which make the control and detection of these contents paramount. We propose in this article, a system of detection of publications related to terrorism in the social network Twitter based on SVM (Simple Vector Machine). We established a 12-step process for analyzing, processing, and then detecting threatening tweets. We have developed 2 scenarios of use of this process, in the first scenario, we apply learning on 4000 tweets written in English, then 4000 tweets written in Arabic and finally 4000 tweets written in bilingual (in both languages). In the 2nd scenario, we apply learning on all the tweets at once (12000 tweets). These two scenarios allow us to compare the results obtained using SVM with results obtained using a syntactical approach.","PeriodicalId":178126,"journal":{"name":"Proceedings of the 3rd International Conference on Future Networks and Distributed Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Detection of terrorist threats on Twitter using SVM\",\"authors\":\"K. Bedjou, F. Azouaou, Abdelouhab Aloui\",\"doi\":\"10.1145/3341325.3342011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many people are exposed daily to different forms of terrorist threats on social networks, which make the control and detection of these contents paramount. We propose in this article, a system of detection of publications related to terrorism in the social network Twitter based on SVM (Simple Vector Machine). We established a 12-step process for analyzing, processing, and then detecting threatening tweets. We have developed 2 scenarios of use of this process, in the first scenario, we apply learning on 4000 tweets written in English, then 4000 tweets written in Arabic and finally 4000 tweets written in bilingual (in both languages). In the 2nd scenario, we apply learning on all the tweets at once (12000 tweets). These two scenarios allow us to compare the results obtained using SVM with results obtained using a syntactical approach.\",\"PeriodicalId\":178126,\"journal\":{\"name\":\"Proceedings of the 3rd International Conference on Future Networks and Distributed Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 3rd International Conference on Future Networks and Distributed Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3341325.3342011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd International Conference on Future Networks and Distributed Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3341325.3342011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

许多人每天都在社交网络上接触到不同形式的恐怖主义威胁,这使得对这些内容的控制和检测变得至关重要。本文提出了一种基于SVM (Simple Vector Machine)的社交网络Twitter中与恐怖主义相关的出版物检测系统。我们建立了一个12步流程来分析,处理,然后检测威胁性推文。我们开发了两种使用这个过程的场景,在第一个场景中,我们将学习应用于4000条用英语写的推文,然后是4000条用阿拉伯语写的推文,最后是4000条用双语写的推文。在第二个场景中,我们一次对所有tweet(12000条tweet)应用学习。这两个场景允许我们将使用SVM获得的结果与使用语法方法获得的结果进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detection of terrorist threats on Twitter using SVM
Many people are exposed daily to different forms of terrorist threats on social networks, which make the control and detection of these contents paramount. We propose in this article, a system of detection of publications related to terrorism in the social network Twitter based on SVM (Simple Vector Machine). We established a 12-step process for analyzing, processing, and then detecting threatening tweets. We have developed 2 scenarios of use of this process, in the first scenario, we apply learning on 4000 tweets written in English, then 4000 tweets written in Arabic and finally 4000 tweets written in bilingual (in both languages). In the 2nd scenario, we apply learning on all the tweets at once (12000 tweets). These two scenarios allow us to compare the results obtained using SVM with results obtained using a syntactical approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信