图像着色方法综述

A. Deo, S. Shinde, Tejas Borde, Suraj Dhamak, Shreyas Dungarwal
{"title":"图像着色方法综述","authors":"A. Deo, S. Shinde, Tejas Borde, Suraj Dhamak, Shreyas Dungarwal","doi":"10.1109/I2CT57861.2023.10126250","DOIUrl":null,"url":null,"abstract":"This review paper focuses on different methods that are already in use for Grayscale Image Colorization. Image Colorization can be done using various methods. In today’s world, Convolutional Neural Networks(CNNs), Autoencoders, Generative Adversarial Networks, etc are the modern techniques that are used for Image Colorization. This paper gives a comparative study of the above methodologies/architectures. Along with this, a review of different Loss functions is categorized into three categories viz. Error-based, GAN-based, Distribution-based Loss functions are described in detail. We also discuss different methods for the evaluation of an image colorizer. Finally we summarize the results of different methodologies.","PeriodicalId":150346,"journal":{"name":"2023 IEEE 8th International Conference for Convergence in Technology (I2CT)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Comprehensive Review of Image Colorization Methods\",\"authors\":\"A. Deo, S. Shinde, Tejas Borde, Suraj Dhamak, Shreyas Dungarwal\",\"doi\":\"10.1109/I2CT57861.2023.10126250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This review paper focuses on different methods that are already in use for Grayscale Image Colorization. Image Colorization can be done using various methods. In today’s world, Convolutional Neural Networks(CNNs), Autoencoders, Generative Adversarial Networks, etc are the modern techniques that are used for Image Colorization. This paper gives a comparative study of the above methodologies/architectures. Along with this, a review of different Loss functions is categorized into three categories viz. Error-based, GAN-based, Distribution-based Loss functions are described in detail. We also discuss different methods for the evaluation of an image colorizer. Finally we summarize the results of different methodologies.\",\"PeriodicalId\":150346,\"journal\":{\"name\":\"2023 IEEE 8th International Conference for Convergence in Technology (I2CT)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 8th International Conference for Convergence in Technology (I2CT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/I2CT57861.2023.10126250\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 8th International Conference for Convergence in Technology (I2CT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I2CT57861.2023.10126250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文主要介绍了目前常用的灰度图像着色方法。图像着色可以使用各种方法来完成。在当今世界,卷积神经网络(cnn),自动编码器,生成对抗网络等是用于图像着色的现代技术。本文对上述方法/架构进行了比较研究。与此同时,对不同的损失函数进行了回顾,分为三类,即基于误差的,基于gan的,基于分布的损失函数进行了详细描述。我们还讨论了评价图像着色器的不同方法。最后,我们总结了不同方法的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Comprehensive Review of Image Colorization Methods
This review paper focuses on different methods that are already in use for Grayscale Image Colorization. Image Colorization can be done using various methods. In today’s world, Convolutional Neural Networks(CNNs), Autoencoders, Generative Adversarial Networks, etc are the modern techniques that are used for Image Colorization. This paper gives a comparative study of the above methodologies/architectures. Along with this, a review of different Loss functions is categorized into three categories viz. Error-based, GAN-based, Distribution-based Loss functions are described in detail. We also discuss different methods for the evaluation of an image colorizer. Finally we summarize the results of different methodologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信