基于相似度线性加权法的搜索结果聚类

Dequan Zheng, Haibo Liu, T. Zhao
{"title":"基于相似度线性加权法的搜索结果聚类","authors":"Dequan Zheng, Haibo Liu, T. Zhao","doi":"10.1109/IALP.2011.72","DOIUrl":null,"url":null,"abstract":"The cluster of search results can facilitate users in finding the needed from massive information. But the effect of the traditional text clustering has been verified not good enough. Lingo Algorithm, which adopts LSI for clustering, generates candidate labels first, then distributes the documents, and forms the clusters finally. On the basis of Lingo Algorithm, this paper presents a linear weighted method of Single-Pass improvement, which integrates HowNet semantic similarity and cosine similarity, fuses and rediscovers clusters, and extracting the cluster labels. The experiments have showed that our method it achieves a good results in clusters in the form of purity and F-measure.","PeriodicalId":297167,"journal":{"name":"2011 International Conference on Asian Language Processing","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Search Results Clustering Based on a Linear Weighting Method of Similarity\",\"authors\":\"Dequan Zheng, Haibo Liu, T. Zhao\",\"doi\":\"10.1109/IALP.2011.72\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The cluster of search results can facilitate users in finding the needed from massive information. But the effect of the traditional text clustering has been verified not good enough. Lingo Algorithm, which adopts LSI for clustering, generates candidate labels first, then distributes the documents, and forms the clusters finally. On the basis of Lingo Algorithm, this paper presents a linear weighted method of Single-Pass improvement, which integrates HowNet semantic similarity and cosine similarity, fuses and rediscovers clusters, and extracting the cluster labels. The experiments have showed that our method it achieves a good results in clusters in the form of purity and F-measure.\",\"PeriodicalId\":297167,\"journal\":{\"name\":\"2011 International Conference on Asian Language Processing\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Asian Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IALP.2011.72\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Asian Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IALP.2011.72","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

搜索结果的聚类可以方便用户从海量信息中找到需要的信息。但是传统的文本聚类方法的聚类效果并不理想。Lingo算法采用大规模集成电路(LSI)进行聚类,首先生成候选标签,然后分发文档,最后形成聚类。在Lingo算法的基础上,提出了一种单次改进的线性加权方法,将HowNet语义相似度和余弦相似度相结合,对聚类进行融合和再发现,提取聚类标签。实验表明,该方法在聚类的纯度和f值方面都取得了较好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Search Results Clustering Based on a Linear Weighting Method of Similarity
The cluster of search results can facilitate users in finding the needed from massive information. But the effect of the traditional text clustering has been verified not good enough. Lingo Algorithm, which adopts LSI for clustering, generates candidate labels first, then distributes the documents, and forms the clusters finally. On the basis of Lingo Algorithm, this paper presents a linear weighted method of Single-Pass improvement, which integrates HowNet semantic similarity and cosine similarity, fuses and rediscovers clusters, and extracting the cluster labels. The experiments have showed that our method it achieves a good results in clusters in the form of purity and F-measure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信