非线性热电弹性动力学的能量-动量格式

M. Franke, R. Ortigosa, Amparo Gil, M. Hille
{"title":"非线性热电弹性动力学的能量-动量格式","authors":"M. Franke, R. Ortigosa, Amparo Gil, M. Hille","doi":"10.23967/WCCM-ECCOMAS.2020.134","DOIUrl":null,"url":null,"abstract":". The present contribution aims at the consistent discretisation of nonlinear, coupled thermo-electro-elastodynamics. In that regard, a new one-step implicit and thermodynamically consistent energy-momentum integration scheme for the simulation of thermo-electro-elastic processes undergoing large deformations will be presented. The consideration is based upon polyconvexity inspired, constitutive models and a new tensor cross product algebra, which facilitate the design of the so-called discrete derivatives (for more information it is referred to the pioneering works [3, 2]). The discrete derivatives are fundamental for the algorithmic evaluation of stresses and other derived variables like entropy density or the absolute temperature leading to a structure preserving integration scheme. In particu-lar, recently published works of the authors concerning consistent time integration of large deformation thermo-elastodynamics","PeriodicalId":148883,"journal":{"name":"14th WCCM-ECCOMAS Congress","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy-Momentum Scheme For Nonlinear Thermo-Electro-Elastodynamics\",\"authors\":\"M. Franke, R. Ortigosa, Amparo Gil, M. Hille\",\"doi\":\"10.23967/WCCM-ECCOMAS.2020.134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". The present contribution aims at the consistent discretisation of nonlinear, coupled thermo-electro-elastodynamics. In that regard, a new one-step implicit and thermodynamically consistent energy-momentum integration scheme for the simulation of thermo-electro-elastic processes undergoing large deformations will be presented. The consideration is based upon polyconvexity inspired, constitutive models and a new tensor cross product algebra, which facilitate the design of the so-called discrete derivatives (for more information it is referred to the pioneering works [3, 2]). The discrete derivatives are fundamental for the algorithmic evaluation of stresses and other derived variables like entropy density or the absolute temperature leading to a structure preserving integration scheme. In particu-lar, recently published works of the authors concerning consistent time integration of large deformation thermo-elastodynamics\",\"PeriodicalId\":148883,\"journal\":{\"name\":\"14th WCCM-ECCOMAS Congress\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"14th WCCM-ECCOMAS Congress\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23967/WCCM-ECCOMAS.2020.134\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"14th WCCM-ECCOMAS Congress","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23967/WCCM-ECCOMAS.2020.134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

. 目前的贡献旨在非线性,耦合热-电-弹动力学的一致离散化。在这方面,将提出一种新的一步隐式和热力学一致的能量-动量积分方案,用于模拟大变形的热电弹性过程。考虑是基于多凸性启发的本构模型和一个新的张量叉积代数,这有利于所谓的离散导数的设计(更多信息可参考开创性的作品[3,2])。离散导数是计算应力和其他衍生变量(如熵密度或绝对温度)的算法的基础,从而实现保持结构的积分方案。特别是作者最近发表的关于大变形热弹性动力学的一致时间积分的著作
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Energy-Momentum Scheme For Nonlinear Thermo-Electro-Elastodynamics
. The present contribution aims at the consistent discretisation of nonlinear, coupled thermo-electro-elastodynamics. In that regard, a new one-step implicit and thermodynamically consistent energy-momentum integration scheme for the simulation of thermo-electro-elastic processes undergoing large deformations will be presented. The consideration is based upon polyconvexity inspired, constitutive models and a new tensor cross product algebra, which facilitate the design of the so-called discrete derivatives (for more information it is referred to the pioneering works [3, 2]). The discrete derivatives are fundamental for the algorithmic evaluation of stresses and other derived variables like entropy density or the absolute temperature leading to a structure preserving integration scheme. In particu-lar, recently published works of the authors concerning consistent time integration of large deformation thermo-elastodynamics
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信