{"title":"采样数据非线性系统确定性学习的新结果","authors":"Weiming Wu, Cong Wang, C. Yuan","doi":"10.23919/CHICC.2018.8483544","DOIUrl":null,"url":null,"abstract":"In this paper, our main concern is to establish new exponential stability-based identification results for a class of Euler nonlinear sampled-data systems using deterministic learning. At first, a new deterministic learning law is designed based on the Lyapunov function method. Rigorous analysis is provided to show that the resulting closed-loop linear time-varying (LTV) systems (containing tracking errors and parameter estimation errors) is exponentially stable. All the states of the closed-loop system converge to a small neighborhood around the origin exponentially. Thus, locally-accurate identification performance can be achieved under the new deterministic learning algorithm. Finally, simulation results on Duffing oscillator system are given to show the effectiveness of the proposed method.","PeriodicalId":158442,"journal":{"name":"2018 37th Chinese Control Conference (CCC)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New Results on Deterministic Learning of Sampled-Data Nonlinear Systems\",\"authors\":\"Weiming Wu, Cong Wang, C. Yuan\",\"doi\":\"10.23919/CHICC.2018.8483544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, our main concern is to establish new exponential stability-based identification results for a class of Euler nonlinear sampled-data systems using deterministic learning. At first, a new deterministic learning law is designed based on the Lyapunov function method. Rigorous analysis is provided to show that the resulting closed-loop linear time-varying (LTV) systems (containing tracking errors and parameter estimation errors) is exponentially stable. All the states of the closed-loop system converge to a small neighborhood around the origin exponentially. Thus, locally-accurate identification performance can be achieved under the new deterministic learning algorithm. Finally, simulation results on Duffing oscillator system are given to show the effectiveness of the proposed method.\",\"PeriodicalId\":158442,\"journal\":{\"name\":\"2018 37th Chinese Control Conference (CCC)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 37th Chinese Control Conference (CCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/CHICC.2018.8483544\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 37th Chinese Control Conference (CCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/CHICC.2018.8483544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
New Results on Deterministic Learning of Sampled-Data Nonlinear Systems
In this paper, our main concern is to establish new exponential stability-based identification results for a class of Euler nonlinear sampled-data systems using deterministic learning. At first, a new deterministic learning law is designed based on the Lyapunov function method. Rigorous analysis is provided to show that the resulting closed-loop linear time-varying (LTV) systems (containing tracking errors and parameter estimation errors) is exponentially stable. All the states of the closed-loop system converge to a small neighborhood around the origin exponentially. Thus, locally-accurate identification performance can be achieved under the new deterministic learning algorithm. Finally, simulation results on Duffing oscillator system are given to show the effectiveness of the proposed method.