采样数据非线性系统确定性学习的新结果

Weiming Wu, Cong Wang, C. Yuan
{"title":"采样数据非线性系统确定性学习的新结果","authors":"Weiming Wu, Cong Wang, C. Yuan","doi":"10.23919/CHICC.2018.8483544","DOIUrl":null,"url":null,"abstract":"In this paper, our main concern is to establish new exponential stability-based identification results for a class of Euler nonlinear sampled-data systems using deterministic learning. At first, a new deterministic learning law is designed based on the Lyapunov function method. Rigorous analysis is provided to show that the resulting closed-loop linear time-varying (LTV) systems (containing tracking errors and parameter estimation errors) is exponentially stable. All the states of the closed-loop system converge to a small neighborhood around the origin exponentially. Thus, locally-accurate identification performance can be achieved under the new deterministic learning algorithm. Finally, simulation results on Duffing oscillator system are given to show the effectiveness of the proposed method.","PeriodicalId":158442,"journal":{"name":"2018 37th Chinese Control Conference (CCC)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New Results on Deterministic Learning of Sampled-Data Nonlinear Systems\",\"authors\":\"Weiming Wu, Cong Wang, C. Yuan\",\"doi\":\"10.23919/CHICC.2018.8483544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, our main concern is to establish new exponential stability-based identification results for a class of Euler nonlinear sampled-data systems using deterministic learning. At first, a new deterministic learning law is designed based on the Lyapunov function method. Rigorous analysis is provided to show that the resulting closed-loop linear time-varying (LTV) systems (containing tracking errors and parameter estimation errors) is exponentially stable. All the states of the closed-loop system converge to a small neighborhood around the origin exponentially. Thus, locally-accurate identification performance can be achieved under the new deterministic learning algorithm. Finally, simulation results on Duffing oscillator system are given to show the effectiveness of the proposed method.\",\"PeriodicalId\":158442,\"journal\":{\"name\":\"2018 37th Chinese Control Conference (CCC)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 37th Chinese Control Conference (CCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/CHICC.2018.8483544\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 37th Chinese Control Conference (CCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/CHICC.2018.8483544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们主要关注的是利用确定性学习建立一类欧拉非线性采样数据系统的新的基于指数稳定性的辨识结果。首先,基于李雅普诺夫函数法设计了一种新的确定性学习律。严格的分析表明,所得到的闭环线性时变(LTV)系统(包含跟踪误差和参数估计误差)具有指数稳定性。闭环系统的所有状态都以指数形式收敛于原点附近的一个小邻域。因此,在新的确定性学习算法下,可以实现局部准确的识别性能。最后,对Duffing振子系统进行了仿真,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New Results on Deterministic Learning of Sampled-Data Nonlinear Systems
In this paper, our main concern is to establish new exponential stability-based identification results for a class of Euler nonlinear sampled-data systems using deterministic learning. At first, a new deterministic learning law is designed based on the Lyapunov function method. Rigorous analysis is provided to show that the resulting closed-loop linear time-varying (LTV) systems (containing tracking errors and parameter estimation errors) is exponentially stable. All the states of the closed-loop system converge to a small neighborhood around the origin exponentially. Thus, locally-accurate identification performance can be achieved under the new deterministic learning algorithm. Finally, simulation results on Duffing oscillator system are given to show the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信