基于迭代学习和异常识别的自动行为模型选择

Heping Li, Jie Liu, Shuwu Zhang
{"title":"基于迭代学习和异常识别的自动行为模型选择","authors":"Heping Li, Jie Liu, Shuwu Zhang","doi":"10.1109/ISI.2011.5984046","DOIUrl":null,"url":null,"abstract":"Automatic behavior recognition is one important task of community security and surveillance system. In this paper, a novel method is proposed for automatic selection of behavior models by iterative learning and abnormality recognition. The method is mainly composed of the following two steps: (1) The models of normal behaviors are automatically selected and trained by combining Dynamic Time Warping based spectral clustering and iterative learning; (2) Maximum A Posteriori adaptation technique is used to estimate the parameters of abnormal behavior models from those of normal behavior models. Compared with the related works in the literature, our method has three advantages: (1) automatic selection of the class number of normal behaviors from large unlabeled video data according to the process of iterative learning, (2) semi-supervised learning of abnormal behavior models, and (3) avoidance of the running risk of over-fitting during learning the Hidden Markov Models of behaviors in case of sparse data. Experiments demonstrate the effectiveness of our proposed method.","PeriodicalId":220165,"journal":{"name":"Proceedings of 2011 IEEE International Conference on Intelligence and Security Informatics","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic behavior model selection by iterative learning and abnormality recognition\",\"authors\":\"Heping Li, Jie Liu, Shuwu Zhang\",\"doi\":\"10.1109/ISI.2011.5984046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic behavior recognition is one important task of community security and surveillance system. In this paper, a novel method is proposed for automatic selection of behavior models by iterative learning and abnormality recognition. The method is mainly composed of the following two steps: (1) The models of normal behaviors are automatically selected and trained by combining Dynamic Time Warping based spectral clustering and iterative learning; (2) Maximum A Posteriori adaptation technique is used to estimate the parameters of abnormal behavior models from those of normal behavior models. Compared with the related works in the literature, our method has three advantages: (1) automatic selection of the class number of normal behaviors from large unlabeled video data according to the process of iterative learning, (2) semi-supervised learning of abnormal behavior models, and (3) avoidance of the running risk of over-fitting during learning the Hidden Markov Models of behaviors in case of sparse data. Experiments demonstrate the effectiveness of our proposed method.\",\"PeriodicalId\":220165,\"journal\":{\"name\":\"Proceedings of 2011 IEEE International Conference on Intelligence and Security Informatics\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 2011 IEEE International Conference on Intelligence and Security Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISI.2011.5984046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 2011 IEEE International Conference on Intelligence and Security Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISI.2011.5984046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

行为自动识别是社区安防监控系统的一项重要任务。本文提出了一种基于迭代学习和异常识别的行为模型自动选择方法。该方法主要由以下两个步骤组成:(1)将基于动态时间翘曲的谱聚类与迭代学习相结合,自动选择并训练正常行为模型;(2)利用最大A后验自适应技术从正常行为模型参数估计异常行为模型参数。与文献相关工作相比,我们的方法具有以下三个优点:(1)根据迭代学习过程从大量未标记视频数据中自动选择正常行为的类数;(2)异常行为模型的半监督学习;(3)避免了在数据稀疏情况下学习行为的隐马尔可夫模型时出现过拟合的运行风险。实验证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic behavior model selection by iterative learning and abnormality recognition
Automatic behavior recognition is one important task of community security and surveillance system. In this paper, a novel method is proposed for automatic selection of behavior models by iterative learning and abnormality recognition. The method is mainly composed of the following two steps: (1) The models of normal behaviors are automatically selected and trained by combining Dynamic Time Warping based spectral clustering and iterative learning; (2) Maximum A Posteriori adaptation technique is used to estimate the parameters of abnormal behavior models from those of normal behavior models. Compared with the related works in the literature, our method has three advantages: (1) automatic selection of the class number of normal behaviors from large unlabeled video data according to the process of iterative learning, (2) semi-supervised learning of abnormal behavior models, and (3) avoidance of the running risk of over-fitting during learning the Hidden Markov Models of behaviors in case of sparse data. Experiments demonstrate the effectiveness of our proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信