Xiangsong Zhang, Zhenhua Liu, Xu An Wang, Fenghe Wang
{"title":"使用多线性映射的恒长环签名方案","authors":"Xiangsong Zhang, Zhenhua Liu, Xu An Wang, Fenghe Wang","doi":"10.1504/ijes.2020.10027497","DOIUrl":null,"url":null,"abstract":"Ring signature is a group-oriented digital signature with anonymity. Most of existing ring signature schemes use bilinear pairings, are provably secure in the random oracles, or are linear signature size to the number of ring member. In this paper, we use multilinear maps, which have been widely used to construct many novel cryptographic primitives recently, to present a ring signature scheme with constant signature size. The proposed scheme is proven to be anonymous against full key exposure and unforgeable against chosen-subring attacks based on the multilinear computational Diffie-Hellman assumption in the standard model. Furthermore, our scheme has the advantage of tighter security reduction by using an optimal security reduction technique.","PeriodicalId":412308,"journal":{"name":"Int. J. Embed. Syst.","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constant-size ring signature scheme using multilinear maps\",\"authors\":\"Xiangsong Zhang, Zhenhua Liu, Xu An Wang, Fenghe Wang\",\"doi\":\"10.1504/ijes.2020.10027497\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ring signature is a group-oriented digital signature with anonymity. Most of existing ring signature schemes use bilinear pairings, are provably secure in the random oracles, or are linear signature size to the number of ring member. In this paper, we use multilinear maps, which have been widely used to construct many novel cryptographic primitives recently, to present a ring signature scheme with constant signature size. The proposed scheme is proven to be anonymous against full key exposure and unforgeable against chosen-subring attacks based on the multilinear computational Diffie-Hellman assumption in the standard model. Furthermore, our scheme has the advantage of tighter security reduction by using an optimal security reduction technique.\",\"PeriodicalId\":412308,\"journal\":{\"name\":\"Int. J. Embed. Syst.\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Embed. Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijes.2020.10027497\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Embed. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijes.2020.10027497","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Constant-size ring signature scheme using multilinear maps
Ring signature is a group-oriented digital signature with anonymity. Most of existing ring signature schemes use bilinear pairings, are provably secure in the random oracles, or are linear signature size to the number of ring member. In this paper, we use multilinear maps, which have been widely used to construct many novel cryptographic primitives recently, to present a ring signature scheme with constant signature size. The proposed scheme is proven to be anonymous against full key exposure and unforgeable against chosen-subring attacks based on the multilinear computational Diffie-Hellman assumption in the standard model. Furthermore, our scheme has the advantage of tighter security reduction by using an optimal security reduction technique.