基于图卷积网络的SCADA和PMU数据能源互联网状态估计

Xian Wu, Huaying Zhang, Shengru Guo, Junwei Cao
{"title":"基于图卷积网络的SCADA和PMU数据能源互联网状态估计","authors":"Xian Wu, Huaying Zhang, Shengru Guo, Junwei Cao","doi":"10.1109/ICEI52466.2021.00024","DOIUrl":null,"url":null,"abstract":"The real-time state estimation is crucial to guarantee the stable operation of energy Internet (EI) which has variable loads and distributed power generations. Therefore, this paper proposes a real-time transient state estimation method for EI based on graph convolutional networks (GCN). Using data of SCADA and limited phasor measurement unit (PMU), the GCN in the proposed method fuses the heterogeneous data of EI buses with the adjacency matrix that represents the topology of EI. Then the transient states of EI buses without PMU measurement are estimated by SCADA data and adjacent PMU data through the training of GCN model. The case study on the simulation data of an IEEE 9 bus system that considers fault injection and disturbances verifies the effectiveness of the proposed approach. The result shows that the proposed approach achieves fast and accurate state estimation of all EI buses during the transient process of faults and disturbances.","PeriodicalId":113203,"journal":{"name":"2021 IEEE International Conference on Energy Internet (ICEI)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"State Estimation of Energy Internet Using SCADA and PMU Data Based on Graph Convolutional Networks\",\"authors\":\"Xian Wu, Huaying Zhang, Shengru Guo, Junwei Cao\",\"doi\":\"10.1109/ICEI52466.2021.00024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The real-time state estimation is crucial to guarantee the stable operation of energy Internet (EI) which has variable loads and distributed power generations. Therefore, this paper proposes a real-time transient state estimation method for EI based on graph convolutional networks (GCN). Using data of SCADA and limited phasor measurement unit (PMU), the GCN in the proposed method fuses the heterogeneous data of EI buses with the adjacency matrix that represents the topology of EI. Then the transient states of EI buses without PMU measurement are estimated by SCADA data and adjacent PMU data through the training of GCN model. The case study on the simulation data of an IEEE 9 bus system that considers fault injection and disturbances verifies the effectiveness of the proposed approach. The result shows that the proposed approach achieves fast and accurate state estimation of all EI buses during the transient process of faults and disturbances.\",\"PeriodicalId\":113203,\"journal\":{\"name\":\"2021 IEEE International Conference on Energy Internet (ICEI)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Energy Internet (ICEI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEI52466.2021.00024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Energy Internet (ICEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEI52466.2021.00024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于具有变负荷和分布式发电的能源互联网,实时状态估计是保证其稳定运行的关键。为此,本文提出了一种基于图卷积网络(GCN)的EI实时暂态估计方法。该方法利用SCADA和有限相量测量单元(PMU)的数据,将EI总线的异构数据与表示EI拓扑结构的邻接矩阵进行融合。然后,通过GCN模型的训练,利用SCADA数据和相邻PMU数据对未测量EI总线的暂态状态进行估计。以考虑故障注入和干扰的ieee9总线系统为例,验证了该方法的有效性。结果表明,该方法能够快速准确地估计出所有EI总线在故障和扰动瞬态过程中的状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
State Estimation of Energy Internet Using SCADA and PMU Data Based on Graph Convolutional Networks
The real-time state estimation is crucial to guarantee the stable operation of energy Internet (EI) which has variable loads and distributed power generations. Therefore, this paper proposes a real-time transient state estimation method for EI based on graph convolutional networks (GCN). Using data of SCADA and limited phasor measurement unit (PMU), the GCN in the proposed method fuses the heterogeneous data of EI buses with the adjacency matrix that represents the topology of EI. Then the transient states of EI buses without PMU measurement are estimated by SCADA data and adjacent PMU data through the training of GCN model. The case study on the simulation data of an IEEE 9 bus system that considers fault injection and disturbances verifies the effectiveness of the proposed approach. The result shows that the proposed approach achieves fast and accurate state estimation of all EI buses during the transient process of faults and disturbances.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信