基于简单递归四元数神经网络的前馈-反馈控制器评述

Kazuhiko Takahashi
{"title":"基于简单递归四元数神经网络的前馈-反馈控制器评述","authors":"Kazuhiko Takahashi","doi":"10.1109/CCTA.2018.8511593","DOIUrl":null,"url":null,"abstract":"In this study, a simple recurrent neural network is designed for controlling nonlinear systems. All signals and parameters of the network are quaternion numbers, and the network is trained with a real-time recurrent learning algorithm. The control system is composed of a feedforward-feedback controller based on a recurrent quaternion neural network and a feedback controller to reconcile the plant output with the desired output. A feedback error learning method is used for the online training of the feedforward-feedback controller. The numerical simulations of controlling discrete-time nonlinear plants are conducted to evaluate the characteristics of the recurrent quaternion neural network-based controller. Simulation results show the feasibility and the effectiveness of the proposed controller.","PeriodicalId":358360,"journal":{"name":"2018 IEEE Conference on Control Technology and Applications (CCTA)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Remarks on Feedforward-Feedback Controller Using Simple Recurrent Quaternion Neural Network\",\"authors\":\"Kazuhiko Takahashi\",\"doi\":\"10.1109/CCTA.2018.8511593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, a simple recurrent neural network is designed for controlling nonlinear systems. All signals and parameters of the network are quaternion numbers, and the network is trained with a real-time recurrent learning algorithm. The control system is composed of a feedforward-feedback controller based on a recurrent quaternion neural network and a feedback controller to reconcile the plant output with the desired output. A feedback error learning method is used for the online training of the feedforward-feedback controller. The numerical simulations of controlling discrete-time nonlinear plants are conducted to evaluate the characteristics of the recurrent quaternion neural network-based controller. Simulation results show the feasibility and the effectiveness of the proposed controller.\",\"PeriodicalId\":358360,\"journal\":{\"name\":\"2018 IEEE Conference on Control Technology and Applications (CCTA)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Conference on Control Technology and Applications (CCTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCTA.2018.8511593\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Conference on Control Technology and Applications (CCTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCTA.2018.8511593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在本研究中,设计了一个简单的递归神经网络来控制非线性系统。网络的所有信号和参数都是四元数,并使用实时循环学习算法对网络进行训练。该控制系统由基于循环四元数神经网络的前馈-反馈控制器和用于协调目标输出与期望输出的反馈控制器组成。采用反馈误差学习方法对前馈-反馈控制器进行在线训练。通过对离散非线性对象控制的数值仿真,评价了基于循环四元数神经网络的控制器的特性。仿真结果表明了该控制器的可行性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Remarks on Feedforward-Feedback Controller Using Simple Recurrent Quaternion Neural Network
In this study, a simple recurrent neural network is designed for controlling nonlinear systems. All signals and parameters of the network are quaternion numbers, and the network is trained with a real-time recurrent learning algorithm. The control system is composed of a feedforward-feedback controller based on a recurrent quaternion neural network and a feedback controller to reconcile the plant output with the desired output. A feedback error learning method is used for the online training of the feedforward-feedback controller. The numerical simulations of controlling discrete-time nonlinear plants are conducted to evaluate the characteristics of the recurrent quaternion neural network-based controller. Simulation results show the feasibility and the effectiveness of the proposed controller.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信