基于离散时间有界观测器的时变不确定性机器人鲁棒控制

Runxian Yang, Chenguang Yang, Mou Chen, J. Na
{"title":"基于离散时间有界观测器的时变不确定性机器人鲁棒控制","authors":"Runxian Yang, Chenguang Yang, Mou Chen, J. Na","doi":"10.1109/IConAC.2016.7604950","DOIUrl":null,"url":null,"abstract":"In this paper, we have developed a disturbance observer (DOB) based on robust control method for a class of nonlinear robot manipulators with time-varying uncertainty. To facilitate digital implementation of the controller, the robot system is formulated in discrete time. The DOB controller is design to compensate for uncertainty and disturbance by bounding both all states and observed uncertain function in a control region. The robust stability of closed-loop robot system can be well guaranteed by applying Schur complement theory and Lyapunov analysis, such that parameters of the DOB controller are derived using linear matrix inequalities (LMIs) theory. Simulation studies have been performed to test and verify the proposed control scheme, which results in supreme robust control and satisfied trajectory tracking performance for robot manipulators with time-varying uncertainty.","PeriodicalId":375052,"journal":{"name":"2016 22nd International Conference on Automation and Computing (ICAC)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Robust control for robot manipulators with time-varying uncertainty based on bounded observer in discrete time\",\"authors\":\"Runxian Yang, Chenguang Yang, Mou Chen, J. Na\",\"doi\":\"10.1109/IConAC.2016.7604950\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we have developed a disturbance observer (DOB) based on robust control method for a class of nonlinear robot manipulators with time-varying uncertainty. To facilitate digital implementation of the controller, the robot system is formulated in discrete time. The DOB controller is design to compensate for uncertainty and disturbance by bounding both all states and observed uncertain function in a control region. The robust stability of closed-loop robot system can be well guaranteed by applying Schur complement theory and Lyapunov analysis, such that parameters of the DOB controller are derived using linear matrix inequalities (LMIs) theory. Simulation studies have been performed to test and verify the proposed control scheme, which results in supreme robust control and satisfied trajectory tracking performance for robot manipulators with time-varying uncertainty.\",\"PeriodicalId\":375052,\"journal\":{\"name\":\"2016 22nd International Conference on Automation and Computing (ICAC)\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 22nd International Conference on Automation and Computing (ICAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IConAC.2016.7604950\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 22nd International Conference on Automation and Computing (ICAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IConAC.2016.7604950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

针对一类具有时变不确定性的非线性机器人,提出了一种基于鲁棒控制方法的扰动观测器。为了便于控制器的数字化实现,机器人系统采用离散时间形式。DOB控制器通过约束控制区域内的所有状态和观测到的不确定性函数来补偿不确定性和干扰。应用Schur补理论和Lyapunov分析可以很好地保证闭环机器人系统的鲁棒稳定性,利用线性矩阵不等式(lmi)理论推导出DOB控制器的参数。通过仿真研究验证了所提出的控制方案,对具有时变不确定性的机械臂具有极高的鲁棒性和良好的轨迹跟踪性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust control for robot manipulators with time-varying uncertainty based on bounded observer in discrete time
In this paper, we have developed a disturbance observer (DOB) based on robust control method for a class of nonlinear robot manipulators with time-varying uncertainty. To facilitate digital implementation of the controller, the robot system is formulated in discrete time. The DOB controller is design to compensate for uncertainty and disturbance by bounding both all states and observed uncertain function in a control region. The robust stability of closed-loop robot system can be well guaranteed by applying Schur complement theory and Lyapunov analysis, such that parameters of the DOB controller are derived using linear matrix inequalities (LMIs) theory. Simulation studies have been performed to test and verify the proposed control scheme, which results in supreme robust control and satisfied trajectory tracking performance for robot manipulators with time-varying uncertainty.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信