评价双狭窄动脉内非牛顿湍流血液模型的效果

Mohammed G. Al-Azawy
{"title":"评价双狭窄动脉内非牛顿湍流血液模型的效果","authors":"Mohammed G. Al-Azawy","doi":"10.31185/ejuow.vol9.iss2.233","DOIUrl":null,"url":null,"abstract":"This article describes the numerical investigation of blood rheology within an artery that includes two narrowing areas via Computational Fluid Dynamics (CFD). Elliptic blending Reynolds stress model and two models of viscosity have been used in this investigation utilizing STAR-CCM+ 2021.2.1. The test model includes two elliptical stenosis with a 2mm distance between them, and the area of stenosis is 75%. Results of normalized axial velocity, turbulent kinetic energy (TKE) and turbulent viscosity ratio (TVR) were evaluated before, through and after the stenosis in order to predict and avoid the real problems that occur from changing the area of the artery. Furthermore, Fractional flow reserve (FFR) was employed to assess the level of risk of stenosis through the artery, which depends on pressure measurements. Corresponding to the author's observation, it was found that the recirculation regions in the area between the stenosis are larger than the area after the stenosis. Moreover, the results of TKE and TVR are almost identical through and downstream of the stenosis, whereas the TKE is slightly higher with the Carreau model than with the Newtonian flow at the upstream and through the first stenosis.","PeriodicalId":184256,"journal":{"name":"Wasit Journal of Engineering Sciences","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating the effect of non-Newtonian turbulent blood models within a double-stenosed artery\",\"authors\":\"Mohammed G. Al-Azawy\",\"doi\":\"10.31185/ejuow.vol9.iss2.233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article describes the numerical investigation of blood rheology within an artery that includes two narrowing areas via Computational Fluid Dynamics (CFD). Elliptic blending Reynolds stress model and two models of viscosity have been used in this investigation utilizing STAR-CCM+ 2021.2.1. The test model includes two elliptical stenosis with a 2mm distance between them, and the area of stenosis is 75%. Results of normalized axial velocity, turbulent kinetic energy (TKE) and turbulent viscosity ratio (TVR) were evaluated before, through and after the stenosis in order to predict and avoid the real problems that occur from changing the area of the artery. Furthermore, Fractional flow reserve (FFR) was employed to assess the level of risk of stenosis through the artery, which depends on pressure measurements. Corresponding to the author's observation, it was found that the recirculation regions in the area between the stenosis are larger than the area after the stenosis. Moreover, the results of TKE and TVR are almost identical through and downstream of the stenosis, whereas the TKE is slightly higher with the Carreau model than with the Newtonian flow at the upstream and through the first stenosis.\",\"PeriodicalId\":184256,\"journal\":{\"name\":\"Wasit Journal of Engineering Sciences\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wasit Journal of Engineering Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31185/ejuow.vol9.iss2.233\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wasit Journal of Engineering Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31185/ejuow.vol9.iss2.233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文描述了通过计算流体动力学(CFD)对包括两个狭窄区域的动脉内血液流变学的数值研究。采用STAR-CCM+ 2021.2.1进行了椭圆共混雷诺应力模型和两种粘度模型的研究。试验模型包括两个椭圆狭窄,它们之间的距离为2mm,狭窄面积为75%。评估狭窄发生前、发生中和发生后归一化轴向速度、湍流动能(TKE)和湍流粘度比(TVR)的结果,以预测和避免因改变动脉面积而出现的实际问题。此外,分数血流储备(FFR)被用来评估动脉狭窄的风险水平,这取决于压力测量。与作者的观察相对应,发现狭窄之间区域的再循环区域大于狭窄后区域。此外,在狭窄的上游和下游,TKE和TVR的结果几乎相同,而在第一狭窄的上游和通过牛顿流时,careau模型的TKE略高于牛顿流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluating the effect of non-Newtonian turbulent blood models within a double-stenosed artery
This article describes the numerical investigation of blood rheology within an artery that includes two narrowing areas via Computational Fluid Dynamics (CFD). Elliptic blending Reynolds stress model and two models of viscosity have been used in this investigation utilizing STAR-CCM+ 2021.2.1. The test model includes two elliptical stenosis with a 2mm distance between them, and the area of stenosis is 75%. Results of normalized axial velocity, turbulent kinetic energy (TKE) and turbulent viscosity ratio (TVR) were evaluated before, through and after the stenosis in order to predict and avoid the real problems that occur from changing the area of the artery. Furthermore, Fractional flow reserve (FFR) was employed to assess the level of risk of stenosis through the artery, which depends on pressure measurements. Corresponding to the author's observation, it was found that the recirculation regions in the area between the stenosis are larger than the area after the stenosis. Moreover, the results of TKE and TVR are almost identical through and downstream of the stenosis, whereas the TKE is slightly higher with the Carreau model than with the Newtonian flow at the upstream and through the first stenosis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信