无监督域自适应语义分割的区域感知语义一致性

Jun Xie, Yixuan Zhou, Xing Xu, Guoqing Wang, Fumin Shen, Yang Yang
{"title":"无监督域自适应语义分割的区域感知语义一致性","authors":"Jun Xie, Yixuan Zhou, Xing Xu, Guoqing Wang, Fumin Shen, Yang Yang","doi":"10.1109/ICME55011.2023.00024","DOIUrl":null,"url":null,"abstract":"As acquiring pixel-wise labels for semantic segmentation is labor-intensive, unsupervised domain adaptation (UDA) techniques aim to transfer knowledge from synthetic data to real-scene data. To overcome the distribution misalignment between the source domain and the target domain, Teacher-Student (TS) methods are widely-used and promising. In TS methods, the student resorts to the one-hot pseudo labels generated by the teacher. However, the generated one-hot pseudo labels are dubious and ignore the semantic correlation among classes. Besides, in the same position of the same image, the output distributions between the student and the teacher should be consistent. Such prediction consistency is defined as Region-Aware Semantic Consistency (RASC). Correspondingly, we propose an RASC module to assimilate the output distributions of the teacher and the student. Our RASC module is flexible and easily plugged into TS state-of-the-arts (SOTAs) based on either CNNs or Transformers.","PeriodicalId":321830,"journal":{"name":"2023 IEEE International Conference on Multimedia and Expo (ICME)","volume":"165 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Region-Aware Semantic Consistency for Unsupervised Domain-Adaptive Semantic Segmentation\",\"authors\":\"Jun Xie, Yixuan Zhou, Xing Xu, Guoqing Wang, Fumin Shen, Yang Yang\",\"doi\":\"10.1109/ICME55011.2023.00024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As acquiring pixel-wise labels for semantic segmentation is labor-intensive, unsupervised domain adaptation (UDA) techniques aim to transfer knowledge from synthetic data to real-scene data. To overcome the distribution misalignment between the source domain and the target domain, Teacher-Student (TS) methods are widely-used and promising. In TS methods, the student resorts to the one-hot pseudo labels generated by the teacher. However, the generated one-hot pseudo labels are dubious and ignore the semantic correlation among classes. Besides, in the same position of the same image, the output distributions between the student and the teacher should be consistent. Such prediction consistency is defined as Region-Aware Semantic Consistency (RASC). Correspondingly, we propose an RASC module to assimilate the output distributions of the teacher and the student. Our RASC module is flexible and easily plugged into TS state-of-the-arts (SOTAs) based on either CNNs or Transformers.\",\"PeriodicalId\":321830,\"journal\":{\"name\":\"2023 IEEE International Conference on Multimedia and Expo (ICME)\",\"volume\":\"165 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Multimedia and Expo (ICME)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICME55011.2023.00024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Multimedia and Expo (ICME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME55011.2023.00024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于获取逐像素标记用于语义分割是一项劳动密集型的工作,无监督域自适应(UDA)技术旨在将知识从合成数据转移到真实场景数据。为了克服源域和目标域之间的分布不一致,师生(TS)方法得到了广泛的应用和应用前景。在TS方法中,学生使用老师生成的单热伪标签。然而,生成的单热伪标签是可疑的,并且忽略了类之间的语义相关性。此外,在同一图像的同一位置,学生和教师之间的输出分布应该一致。这种预测一致性被定义为区域感知语义一致性(Region-Aware Semantic consistency, RASC)。相应地,我们提出了一个RASC模块来吸收老师和学生的输出分布。我们的RASC模块是灵活的,很容易插入到基于cnn或变压器的最先进的TS (sota)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Region-Aware Semantic Consistency for Unsupervised Domain-Adaptive Semantic Segmentation
As acquiring pixel-wise labels for semantic segmentation is labor-intensive, unsupervised domain adaptation (UDA) techniques aim to transfer knowledge from synthetic data to real-scene data. To overcome the distribution misalignment between the source domain and the target domain, Teacher-Student (TS) methods are widely-used and promising. In TS methods, the student resorts to the one-hot pseudo labels generated by the teacher. However, the generated one-hot pseudo labels are dubious and ignore the semantic correlation among classes. Besides, in the same position of the same image, the output distributions between the student and the teacher should be consistent. Such prediction consistency is defined as Region-Aware Semantic Consistency (RASC). Correspondingly, we propose an RASC module to assimilate the output distributions of the teacher and the student. Our RASC module is flexible and easily plugged into TS state-of-the-arts (SOTAs) based on either CNNs or Transformers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信