Jun Xie, Yixuan Zhou, Xing Xu, Guoqing Wang, Fumin Shen, Yang Yang
{"title":"无监督域自适应语义分割的区域感知语义一致性","authors":"Jun Xie, Yixuan Zhou, Xing Xu, Guoqing Wang, Fumin Shen, Yang Yang","doi":"10.1109/ICME55011.2023.00024","DOIUrl":null,"url":null,"abstract":"As acquiring pixel-wise labels for semantic segmentation is labor-intensive, unsupervised domain adaptation (UDA) techniques aim to transfer knowledge from synthetic data to real-scene data. To overcome the distribution misalignment between the source domain and the target domain, Teacher-Student (TS) methods are widely-used and promising. In TS methods, the student resorts to the one-hot pseudo labels generated by the teacher. However, the generated one-hot pseudo labels are dubious and ignore the semantic correlation among classes. Besides, in the same position of the same image, the output distributions between the student and the teacher should be consistent. Such prediction consistency is defined as Region-Aware Semantic Consistency (RASC). Correspondingly, we propose an RASC module to assimilate the output distributions of the teacher and the student. Our RASC module is flexible and easily plugged into TS state-of-the-arts (SOTAs) based on either CNNs or Transformers.","PeriodicalId":321830,"journal":{"name":"2023 IEEE International Conference on Multimedia and Expo (ICME)","volume":"165 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Region-Aware Semantic Consistency for Unsupervised Domain-Adaptive Semantic Segmentation\",\"authors\":\"Jun Xie, Yixuan Zhou, Xing Xu, Guoqing Wang, Fumin Shen, Yang Yang\",\"doi\":\"10.1109/ICME55011.2023.00024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As acquiring pixel-wise labels for semantic segmentation is labor-intensive, unsupervised domain adaptation (UDA) techniques aim to transfer knowledge from synthetic data to real-scene data. To overcome the distribution misalignment between the source domain and the target domain, Teacher-Student (TS) methods are widely-used and promising. In TS methods, the student resorts to the one-hot pseudo labels generated by the teacher. However, the generated one-hot pseudo labels are dubious and ignore the semantic correlation among classes. Besides, in the same position of the same image, the output distributions between the student and the teacher should be consistent. Such prediction consistency is defined as Region-Aware Semantic Consistency (RASC). Correspondingly, we propose an RASC module to assimilate the output distributions of the teacher and the student. Our RASC module is flexible and easily plugged into TS state-of-the-arts (SOTAs) based on either CNNs or Transformers.\",\"PeriodicalId\":321830,\"journal\":{\"name\":\"2023 IEEE International Conference on Multimedia and Expo (ICME)\",\"volume\":\"165 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Multimedia and Expo (ICME)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICME55011.2023.00024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Multimedia and Expo (ICME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME55011.2023.00024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Region-Aware Semantic Consistency for Unsupervised Domain-Adaptive Semantic Segmentation
As acquiring pixel-wise labels for semantic segmentation is labor-intensive, unsupervised domain adaptation (UDA) techniques aim to transfer knowledge from synthetic data to real-scene data. To overcome the distribution misalignment between the source domain and the target domain, Teacher-Student (TS) methods are widely-used and promising. In TS methods, the student resorts to the one-hot pseudo labels generated by the teacher. However, the generated one-hot pseudo labels are dubious and ignore the semantic correlation among classes. Besides, in the same position of the same image, the output distributions between the student and the teacher should be consistent. Such prediction consistency is defined as Region-Aware Semantic Consistency (RASC). Correspondingly, we propose an RASC module to assimilate the output distributions of the teacher and the student. Our RASC module is flexible and easily plugged into TS state-of-the-arts (SOTAs) based on either CNNs or Transformers.