结构方程建模(SEM)的假设,数据分布分析的正态性和模型拟合措施

Ng Kok Wah
{"title":"结构方程建模(SEM)的假设,数据分布分析的正态性和模型拟合措施","authors":"Ng Kok Wah","doi":"10.47363/jcet/2023(4)135","DOIUrl":null,"url":null,"abstract":"Structure Equation Modeling (SEM) is a well-known research technique. Before proceed further in data analysis, the researcher describes the fundamentals of Structure Equation Modeling (SEM), as well as its modeling criteria, assumptions, and concepts.","PeriodicalId":102800,"journal":{"name":"Journal of Clinical Epidemiology & Toxicology","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assumptions for Structure Equation Modeling (SEM), Normality of Data Distribution Analysis & Model Fit Measures\",\"authors\":\"Ng Kok Wah\",\"doi\":\"10.47363/jcet/2023(4)135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Structure Equation Modeling (SEM) is a well-known research technique. Before proceed further in data analysis, the researcher describes the fundamentals of Structure Equation Modeling (SEM), as well as its modeling criteria, assumptions, and concepts.\",\"PeriodicalId\":102800,\"journal\":{\"name\":\"Journal of Clinical Epidemiology & Toxicology\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Clinical Epidemiology & Toxicology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47363/jcet/2023(4)135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Epidemiology & Toxicology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47363/jcet/2023(4)135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

结构方程建模(SEM)是一种众所周知的研究技术。在进一步进行数据分析之前,研究人员描述了结构方程建模(SEM)的基本原理,以及它的建模标准、假设和概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assumptions for Structure Equation Modeling (SEM), Normality of Data Distribution Analysis & Model Fit Measures
Structure Equation Modeling (SEM) is a well-known research technique. Before proceed further in data analysis, the researcher describes the fundamentals of Structure Equation Modeling (SEM), as well as its modeling criteria, assumptions, and concepts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信