自监督表示学习增强多时相卫星图像的广域搜索

Tom Stephens, I. Corley, Adrian Gould, A. Polakiewicz, David McVicar, Carlos Torres, Rose Colangelo, Mario Aguilar-Simon
{"title":"自监督表示学习增强多时相卫星图像的广域搜索","authors":"Tom Stephens, I. Corley, Adrian Gould, A. Polakiewicz, David McVicar, Carlos Torres, Rose Colangelo, Mario Aguilar-Simon","doi":"10.1109/IGARSS46834.2022.9884559","DOIUrl":null,"url":null,"abstract":"We describe the advancement of the classical anomaly detection paradigm to a task-relevant change detection problem. Modern machine learning methods support the development of more sophisticated multi-temporal satellite image analysis. Here, we look at the problem of detecting and distinguishing anthropogenic change from natural change over broad regions around the globe. These tasks are well-suited for machine learning algorithms, however, the creation of large scale annotated satellite imagery datasets with sufficient spatial and temporal resolution is expensive. In this paper, we explore utilizing spatiotemporal self-supervised learning which leverages the natural chronology of the data collection to train generalizable feature extractors for various downstream tasks. This approach is shown to boost downstream performance (+10% F1 score, precision, recall), and reduce training time by 80% for the broad area search problem using multi-temporal Sentinel-2 imagery.","PeriodicalId":426003,"journal":{"name":"IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-Supervised Representation Learning Enhances Broad Area Search in Multi-Temporal Satellite Imagery\",\"authors\":\"Tom Stephens, I. Corley, Adrian Gould, A. Polakiewicz, David McVicar, Carlos Torres, Rose Colangelo, Mario Aguilar-Simon\",\"doi\":\"10.1109/IGARSS46834.2022.9884559\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe the advancement of the classical anomaly detection paradigm to a task-relevant change detection problem. Modern machine learning methods support the development of more sophisticated multi-temporal satellite image analysis. Here, we look at the problem of detecting and distinguishing anthropogenic change from natural change over broad regions around the globe. These tasks are well-suited for machine learning algorithms, however, the creation of large scale annotated satellite imagery datasets with sufficient spatial and temporal resolution is expensive. In this paper, we explore utilizing spatiotemporal self-supervised learning which leverages the natural chronology of the data collection to train generalizable feature extractors for various downstream tasks. This approach is shown to boost downstream performance (+10% F1 score, precision, recall), and reduce training time by 80% for the broad area search problem using multi-temporal Sentinel-2 imagery.\",\"PeriodicalId\":426003,\"journal\":{\"name\":\"IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS46834.2022.9884559\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS46834.2022.9884559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们将经典异常检测范式的进步描述为与任务相关的变化检测问题。现代机器学习方法支持更复杂的多时相卫星图像分析的发展。在这里,我们着眼于在全球广大地区检测和区分人为变化和自然变化的问题。这些任务非常适合机器学习算法,然而,创建具有足够空间和时间分辨率的大规模注释卫星图像数据集是昂贵的。在本文中,我们探索利用时空自监督学习,利用数据收集的自然年表来训练各种下游任务的可泛化特征提取器。该方法被证明可以提高下游性能(+10%的F1分数、精度、召回率),并将使用多时相Sentinel-2图像的广域搜索问题的训练时间减少80%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Self-Supervised Representation Learning Enhances Broad Area Search in Multi-Temporal Satellite Imagery
We describe the advancement of the classical anomaly detection paradigm to a task-relevant change detection problem. Modern machine learning methods support the development of more sophisticated multi-temporal satellite image analysis. Here, we look at the problem of detecting and distinguishing anthropogenic change from natural change over broad regions around the globe. These tasks are well-suited for machine learning algorithms, however, the creation of large scale annotated satellite imagery datasets with sufficient spatial and temporal resolution is expensive. In this paper, we explore utilizing spatiotemporal self-supervised learning which leverages the natural chronology of the data collection to train generalizable feature extractors for various downstream tasks. This approach is shown to boost downstream performance (+10% F1 score, precision, recall), and reduce training time by 80% for the broad area search problem using multi-temporal Sentinel-2 imagery.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信