{"title":"大跨度声学建模的多帧分解","authors":"Liang Lu, S. Renals","doi":"10.1109/ICASSP.2015.7178841","DOIUrl":null,"url":null,"abstract":"Acoustic models based on Gaussian mixture models (GMMs) typically use short span acoustic feature inputs. This does not capture long-term temporal information from speech owing to the conditional independence assumption of hidden Markov models. In this paper, we present an implicit approach that approximates the joint distribution of long span features by product of factorized models, in contrast to deep neural networks (DNNs) that model feature correlations directly. The approach is applicable to a broad range of acoustic models. We present experiments using GMM and probabilistic linear discriminant analysis (PLDA) based models on Switchboard, observing consistent word error rate reductions.","PeriodicalId":117666,"journal":{"name":"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-frame factorisation for long-span acoustic modelling\",\"authors\":\"Liang Lu, S. Renals\",\"doi\":\"10.1109/ICASSP.2015.7178841\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Acoustic models based on Gaussian mixture models (GMMs) typically use short span acoustic feature inputs. This does not capture long-term temporal information from speech owing to the conditional independence assumption of hidden Markov models. In this paper, we present an implicit approach that approximates the joint distribution of long span features by product of factorized models, in contrast to deep neural networks (DNNs) that model feature correlations directly. The approach is applicable to a broad range of acoustic models. We present experiments using GMM and probabilistic linear discriminant analysis (PLDA) based models on Switchboard, observing consistent word error rate reductions.\",\"PeriodicalId\":117666,\"journal\":{\"name\":\"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2015.7178841\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2015.7178841","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-frame factorisation for long-span acoustic modelling
Acoustic models based on Gaussian mixture models (GMMs) typically use short span acoustic feature inputs. This does not capture long-term temporal information from speech owing to the conditional independence assumption of hidden Markov models. In this paper, we present an implicit approach that approximates the joint distribution of long span features by product of factorized models, in contrast to deep neural networks (DNNs) that model feature correlations directly. The approach is applicable to a broad range of acoustic models. We present experiments using GMM and probabilistic linear discriminant analysis (PLDA) based models on Switchboard, observing consistent word error rate reductions.