基于尺度感知变化检测的单目slam故障诊断

Takuma Sugimoto, Yamaguchi Kousuke, Zhongshan Bao, Minying Ye, Hiroki Tomoe, Tanaka Kanji
{"title":"基于尺度感知变化检测的单目slam故障诊断","authors":"Takuma Sugimoto, Yamaguchi Kousuke, Zhongshan Bao, Minying Ye, Hiroki Tomoe, Tanaka Kanji","doi":"10.1109/IEEECONF49454.2021.9382715","DOIUrl":null,"url":null,"abstract":"In this paper, we present a new fault diagnosis (FD) -based approach for image change detection (ICD) that can detect significant changes as inconsistencies between different visual experiences of monocular-SLAM. Unlike classical change detection approaches such as pairwise image comparison (PC) and anomaly detection (AD), neither the memorization of each map image nor the maintenance of up-to-date placespecific anomaly detectors are required in this FD approach. A significant challenge that is encountered when incorporating different visual experiences into FD involves dealing with the varying scales of changed objects. To address this issue, we reconsider the bag-of-words (BoW) image representation, and focus on the state-of-the-art BoW-based SLAM paradigm. As a key advantage, the local feature -based representation enables to re-organize the BoW into any different scales without modifying the database entries (i.e., the map). Furthermore, it enables to control discriminative power and expected inconsistencies of local features. Experiments on challenging cross-season ICD using publicly available NCLT dataset, and comparison against state-of-the-art ICD algorithms validate the efficacy of the proposed FD approach with/without combining AD and/or PC.","PeriodicalId":395378,"journal":{"name":"2021 IEEE/SICE International Symposium on System Integration (SII)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fault-Diagnosing Monocular-SLAM for Scale-Aware Change Detection\",\"authors\":\"Takuma Sugimoto, Yamaguchi Kousuke, Zhongshan Bao, Minying Ye, Hiroki Tomoe, Tanaka Kanji\",\"doi\":\"10.1109/IEEECONF49454.2021.9382715\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a new fault diagnosis (FD) -based approach for image change detection (ICD) that can detect significant changes as inconsistencies between different visual experiences of monocular-SLAM. Unlike classical change detection approaches such as pairwise image comparison (PC) and anomaly detection (AD), neither the memorization of each map image nor the maintenance of up-to-date placespecific anomaly detectors are required in this FD approach. A significant challenge that is encountered when incorporating different visual experiences into FD involves dealing with the varying scales of changed objects. To address this issue, we reconsider the bag-of-words (BoW) image representation, and focus on the state-of-the-art BoW-based SLAM paradigm. As a key advantage, the local feature -based representation enables to re-organize the BoW into any different scales without modifying the database entries (i.e., the map). Furthermore, it enables to control discriminative power and expected inconsistencies of local features. Experiments on challenging cross-season ICD using publicly available NCLT dataset, and comparison against state-of-the-art ICD algorithms validate the efficacy of the proposed FD approach with/without combining AD and/or PC.\",\"PeriodicalId\":395378,\"journal\":{\"name\":\"2021 IEEE/SICE International Symposium on System Integration (SII)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE/SICE International Symposium on System Integration (SII)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEEECONF49454.2021.9382715\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/SICE International Symposium on System Integration (SII)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEECONF49454.2021.9382715","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于故障诊断(FD)的图像变化检测(ICD)新方法,该方法可以检测单眼slam不同视觉体验之间的不一致性等显著变化。与传统的变化检测方法(如成对图像比较(PC)和异常检测(AD))不同,这种FD方法既不需要记忆每张地图图像,也不需要维护最新的特定地点异常检测器。在将不同的视觉体验融入FD时遇到的一个重大挑战涉及处理变化对象的不同尺度。为了解决这个问题,我们重新考虑词袋(BoW)图像表示,并关注最先进的基于词袋的SLAM范式。作为一个关键的优势,基于局部特征的表示可以在不修改数据库条目(即地图)的情况下将BoW重新组织成任何不同的比例尺。此外,它还可以控制判别能力和局部特征的预期不一致性。利用公开的NCLT数据集对具有挑战性的跨季节ICD进行了实验,并与最先进的ICD算法进行了比较,验证了所提出的FD方法在结合/不结合AD和/或PC的情况下的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fault-Diagnosing Monocular-SLAM for Scale-Aware Change Detection
In this paper, we present a new fault diagnosis (FD) -based approach for image change detection (ICD) that can detect significant changes as inconsistencies between different visual experiences of monocular-SLAM. Unlike classical change detection approaches such as pairwise image comparison (PC) and anomaly detection (AD), neither the memorization of each map image nor the maintenance of up-to-date placespecific anomaly detectors are required in this FD approach. A significant challenge that is encountered when incorporating different visual experiences into FD involves dealing with the varying scales of changed objects. To address this issue, we reconsider the bag-of-words (BoW) image representation, and focus on the state-of-the-art BoW-based SLAM paradigm. As a key advantage, the local feature -based representation enables to re-organize the BoW into any different scales without modifying the database entries (i.e., the map). Furthermore, it enables to control discriminative power and expected inconsistencies of local features. Experiments on challenging cross-season ICD using publicly available NCLT dataset, and comparison against state-of-the-art ICD algorithms validate the efficacy of the proposed FD approach with/without combining AD and/or PC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信