在智能手机上使用安全的手写密码进行用户验证

T. Kutzner, Fanyu Ye, Ingrid Bönninger, C. Travieso-González, M. Dutta, Anushikha Singh
{"title":"在智能手机上使用安全的手写密码进行用户验证","authors":"T. Kutzner, Fanyu Ye, Ingrid Bönninger, C. Travieso-González, M. Dutta, Anushikha Singh","doi":"10.1109/IC3.2015.7346651","DOIUrl":null,"url":null,"abstract":"This article focuses on the writer verification using safe handwritten passwords on smartphones. We extract and select 25 static and dynamic biometric features from a handwritten character password sequence on an android touch-screen device. For the writer verification we use the classification algorithms of WEKA framework. Our 32 test persons wrote generated safe passwords with a length of 8 characters. Each person wrote their password 12 times. The approach works with 384 training samples on a supervised system. The best result of 98.72% success rate for a correct classification, the proposal reached with the KStar and k- Nearest Neighbor classifier after ranking with Fisher Score feature selection. The best result of 10.42% false accepted rate is reached with KStar classifier.","PeriodicalId":217950,"journal":{"name":"2015 Eighth International Conference on Contemporary Computing (IC3)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"User verification using safe handwritten passwords on smartphones\",\"authors\":\"T. Kutzner, Fanyu Ye, Ingrid Bönninger, C. Travieso-González, M. Dutta, Anushikha Singh\",\"doi\":\"10.1109/IC3.2015.7346651\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article focuses on the writer verification using safe handwritten passwords on smartphones. We extract and select 25 static and dynamic biometric features from a handwritten character password sequence on an android touch-screen device. For the writer verification we use the classification algorithms of WEKA framework. Our 32 test persons wrote generated safe passwords with a length of 8 characters. Each person wrote their password 12 times. The approach works with 384 training samples on a supervised system. The best result of 98.72% success rate for a correct classification, the proposal reached with the KStar and k- Nearest Neighbor classifier after ranking with Fisher Score feature selection. The best result of 10.42% false accepted rate is reached with KStar classifier.\",\"PeriodicalId\":217950,\"journal\":{\"name\":\"2015 Eighth International Conference on Contemporary Computing (IC3)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Eighth International Conference on Contemporary Computing (IC3)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IC3.2015.7346651\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Eighth International Conference on Contemporary Computing (IC3)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC3.2015.7346651","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文主要介绍在智能手机上使用安全的手写密码进行作者验证。我们从android触摸屏设备上的手写字符密码序列中提取并选择了25个静态和动态生物特征。作者验证使用了WEKA框架的分类算法。我们的32名测试人员编写了生成的长度为8个字符的安全密码。每个人都写了12次密码。该方法在一个监督系统上使用384个训练样本。在对Fisher Score特征选择进行排序后,KStar和k-近邻分类器的分类成功率达到了98.72%的最佳结果。KStar分类器的最佳结果为10.42%的误接受率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
User verification using safe handwritten passwords on smartphones
This article focuses on the writer verification using safe handwritten passwords on smartphones. We extract and select 25 static and dynamic biometric features from a handwritten character password sequence on an android touch-screen device. For the writer verification we use the classification algorithms of WEKA framework. Our 32 test persons wrote generated safe passwords with a length of 8 characters. Each person wrote their password 12 times. The approach works with 384 training samples on a supervised system. The best result of 98.72% success rate for a correct classification, the proposal reached with the KStar and k- Nearest Neighbor classifier after ranking with Fisher Score feature selection. The best result of 10.42% false accepted rate is reached with KStar classifier.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信