Sai Srinivas Nageshwaraniyer, Y. Son, S. Dessureault
{"title":"基于仿真的露天煤矿复杂车铲系统鲁棒优化","authors":"Sai Srinivas Nageshwaraniyer, Y. Son, S. Dessureault","doi":"10.1109/WSC.2013.6721714","DOIUrl":null,"url":null,"abstract":"A robust simulation-based optimization approach is proposed for truck-shovel systems in surface coal mines to maximize the expected value of revenue obtained from customer trains. To this end, a large surface coal mine in North America is considered as case study, and a highly detailed simulation model of that mine is constructed in Arena. Factors encountered in material handling operations that may affect the robustness of revenue are then classified into 1) controllable, 2) uncontrollable and 3) constant categories. Historical production data of the mine is used to derive probability distributions for the uncontrollable factors. Then, Response Surface Methodology is applied to derive an expression for the variance of revenue under the influence of controllable and uncontrollable factors. The resulting variance expression is applied as a constraint to the mathematical formulation for optimization using OptQuest. Finally, coal production is observed under variation in number of trucks and down events.","PeriodicalId":223717,"journal":{"name":"2013 Winter Simulations Conference (WSC)","volume":"282 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Simulation-based robust optimization for complex truck-shovel systems in surface coal mines\",\"authors\":\"Sai Srinivas Nageshwaraniyer, Y. Son, S. Dessureault\",\"doi\":\"10.1109/WSC.2013.6721714\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A robust simulation-based optimization approach is proposed for truck-shovel systems in surface coal mines to maximize the expected value of revenue obtained from customer trains. To this end, a large surface coal mine in North America is considered as case study, and a highly detailed simulation model of that mine is constructed in Arena. Factors encountered in material handling operations that may affect the robustness of revenue are then classified into 1) controllable, 2) uncontrollable and 3) constant categories. Historical production data of the mine is used to derive probability distributions for the uncontrollable factors. Then, Response Surface Methodology is applied to derive an expression for the variance of revenue under the influence of controllable and uncontrollable factors. The resulting variance expression is applied as a constraint to the mathematical formulation for optimization using OptQuest. Finally, coal production is observed under variation in number of trucks and down events.\",\"PeriodicalId\":223717,\"journal\":{\"name\":\"2013 Winter Simulations Conference (WSC)\",\"volume\":\"282 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Winter Simulations Conference (WSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WSC.2013.6721714\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Winter Simulations Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC.2013.6721714","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Simulation-based robust optimization for complex truck-shovel systems in surface coal mines
A robust simulation-based optimization approach is proposed for truck-shovel systems in surface coal mines to maximize the expected value of revenue obtained from customer trains. To this end, a large surface coal mine in North America is considered as case study, and a highly detailed simulation model of that mine is constructed in Arena. Factors encountered in material handling operations that may affect the robustness of revenue are then classified into 1) controllable, 2) uncontrollable and 3) constant categories. Historical production data of the mine is used to derive probability distributions for the uncontrollable factors. Then, Response Surface Methodology is applied to derive an expression for the variance of revenue under the influence of controllable and uncontrollable factors. The resulting variance expression is applied as a constraint to the mathematical formulation for optimization using OptQuest. Finally, coal production is observed under variation in number of trucks and down events.