深度套期保值:学习风险中性隐含波动率动态

Hans Buehler, M. Phillip, Mikko S. Pakkanen, Ben Wood
{"title":"深度套期保值:学习风险中性隐含波动率动态","authors":"Hans Buehler, M. Phillip, Mikko S. Pakkanen, Ben Wood","doi":"10.2139/ssrn.3808555","DOIUrl":null,"url":null,"abstract":"We present a numerically efficient approach for machine-learning a risk-neutral measure for paths of simulated spot and option prices up to a finite horizon under convex transaction costs and convex trading constraints. <br><br>This approach can then be used to implement a <i>stochastic implied volatility</i> model in the following two steps:<br>1) Train a market simulator for option prices, for example as discussed in our recent work <a href=\"https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3470756\">here</a>;<br><br>2) Find a risk-neutral density, specifically in our approach the <i>minimal entropy martingale measure</i>.<br><br>The resulting model can be used for risk-neutral pricing, or for <a href=\"https://ssrn.com/abstract=3120710\">Deep Hedging</a> in the case of transaction costs or trading constraints.<br><br>To motivate the proposed approach, we also show that market dynamics are free from \"statistical arbitrage\" in the absence of transaction costs if and only if they follow a risk-neutral measure. We additionally provide a more general characterization in the presence of convex transaction costs and trading constraints. <br><br>These results can be seen as an analogue of the fundamental theorem of asset pricing for statistical arbitrage under trading frictions and are of independent interest.","PeriodicalId":241211,"journal":{"name":"CompSciRN: Artificial Intelligence (Topic)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Hedging: Learning Risk-Neutral Implied Volatility Dynamics\",\"authors\":\"Hans Buehler, M. Phillip, Mikko S. Pakkanen, Ben Wood\",\"doi\":\"10.2139/ssrn.3808555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a numerically efficient approach for machine-learning a risk-neutral measure for paths of simulated spot and option prices up to a finite horizon under convex transaction costs and convex trading constraints. <br><br>This approach can then be used to implement a <i>stochastic implied volatility</i> model in the following two steps:<br>1) Train a market simulator for option prices, for example as discussed in our recent work <a href=\\\"https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3470756\\\">here</a>;<br><br>2) Find a risk-neutral density, specifically in our approach the <i>minimal entropy martingale measure</i>.<br><br>The resulting model can be used for risk-neutral pricing, or for <a href=\\\"https://ssrn.com/abstract=3120710\\\">Deep Hedging</a> in the case of transaction costs or trading constraints.<br><br>To motivate the proposed approach, we also show that market dynamics are free from \\\"statistical arbitrage\\\" in the absence of transaction costs if and only if they follow a risk-neutral measure. We additionally provide a more general characterization in the presence of convex transaction costs and trading constraints. <br><br>These results can be seen as an analogue of the fundamental theorem of asset pricing for statistical arbitrage under trading frictions and are of independent interest.\",\"PeriodicalId\":241211,\"journal\":{\"name\":\"CompSciRN: Artificial Intelligence (Topic)\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CompSciRN: Artificial Intelligence (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3808555\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CompSciRN: Artificial Intelligence (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3808555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种数值上有效的机器学习方法,一种在凸交易成本和凸交易约束下模拟现货和期权价格到有限视域的路径的风险中性度量。这种方法可以通过以下两步来实现随机隐含波动率模型:1)训练期权价格的市场模拟器,例如我们最近在这里讨论的;2)找到一个风险中性密度,特别是在我们的方法中最小熵鞅度量。由此产生的模型可用于风险中性定价,或在交易成本或交易约束的情况下用于深度对冲。为了激励提出的方法,我们还表明,当且仅当市场动态遵循风险中性措施时,在没有交易成本的情况下,市场动态不受“统计套利”的影响。此外,我们还提供了凸交易成本和交易约束存在的更一般的表征。这些结果可以看作是交易摩擦下统计套利的资产定价基本定理的类比,具有独立的研究意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Hedging: Learning Risk-Neutral Implied Volatility Dynamics
We present a numerically efficient approach for machine-learning a risk-neutral measure for paths of simulated spot and option prices up to a finite horizon under convex transaction costs and convex trading constraints.

This approach can then be used to implement a stochastic implied volatility model in the following two steps:
1) Train a market simulator for option prices, for example as discussed in our recent work here;

2) Find a risk-neutral density, specifically in our approach the minimal entropy martingale measure.

The resulting model can be used for risk-neutral pricing, or for Deep Hedging in the case of transaction costs or trading constraints.

To motivate the proposed approach, we also show that market dynamics are free from "statistical arbitrage" in the absence of transaction costs if and only if they follow a risk-neutral measure. We additionally provide a more general characterization in the presence of convex transaction costs and trading constraints.

These results can be seen as an analogue of the fundamental theorem of asset pricing for statistical arbitrage under trading frictions and are of independent interest.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信