{"title":"根据看不见的数据为你的预测打分","authors":"Yuhao Chen, Shen Zhang, Renjie Song","doi":"10.1109/CVPRW59228.2023.00330","DOIUrl":null,"url":null,"abstract":"The performance of deep neural networks can vary substantially when evaluated on datasets different from the training data. This presents a crucial challenge in evaluating models on unseen data without access to labels. Previous methods compute a single model-based indicator at the dataset level and use regression methods to predict performance. To evaluate the model more accurately, we propose a sample-level label-free model evaluation method for better prediction on unseen data, named Scoring Your Prediction (SYP). Specifically, SYP introduces low-level image-based features (e.g., blurriness) to model image quality that is important for classification. We complementarily combine model-based indicators and image-based indicators to enhance sample representation. Additionally, we predict the probability that each sample is correctly classified using a neural network named oracle model. Compared to other existing methods, the proposed method outperforms them on 40 unlabeled datasets transformed by CIFAR-10. Especially, SYP lowers RMSE by 1.83-3.97 for ResNet-56 evaluation and 2.32-9.74 for RepVGG-A0 evaluation compared with latest methods. Note that our scheme won the championship on the DataCV Challenge at CVPR 2023. Source code is avaliabe at https://github.com/megvii-research/SYP.","PeriodicalId":355438,"journal":{"name":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scoring Your Prediction on Unseen Data\",\"authors\":\"Yuhao Chen, Shen Zhang, Renjie Song\",\"doi\":\"10.1109/CVPRW59228.2023.00330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The performance of deep neural networks can vary substantially when evaluated on datasets different from the training data. This presents a crucial challenge in evaluating models on unseen data without access to labels. Previous methods compute a single model-based indicator at the dataset level and use regression methods to predict performance. To evaluate the model more accurately, we propose a sample-level label-free model evaluation method for better prediction on unseen data, named Scoring Your Prediction (SYP). Specifically, SYP introduces low-level image-based features (e.g., blurriness) to model image quality that is important for classification. We complementarily combine model-based indicators and image-based indicators to enhance sample representation. Additionally, we predict the probability that each sample is correctly classified using a neural network named oracle model. Compared to other existing methods, the proposed method outperforms them on 40 unlabeled datasets transformed by CIFAR-10. Especially, SYP lowers RMSE by 1.83-3.97 for ResNet-56 evaluation and 2.32-9.74 for RepVGG-A0 evaluation compared with latest methods. Note that our scheme won the championship on the DataCV Challenge at CVPR 2023. Source code is avaliabe at https://github.com/megvii-research/SYP.\",\"PeriodicalId\":355438,\"journal\":{\"name\":\"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPRW59228.2023.00330\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW59228.2023.00330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The performance of deep neural networks can vary substantially when evaluated on datasets different from the training data. This presents a crucial challenge in evaluating models on unseen data without access to labels. Previous methods compute a single model-based indicator at the dataset level and use regression methods to predict performance. To evaluate the model more accurately, we propose a sample-level label-free model evaluation method for better prediction on unseen data, named Scoring Your Prediction (SYP). Specifically, SYP introduces low-level image-based features (e.g., blurriness) to model image quality that is important for classification. We complementarily combine model-based indicators and image-based indicators to enhance sample representation. Additionally, we predict the probability that each sample is correctly classified using a neural network named oracle model. Compared to other existing methods, the proposed method outperforms them on 40 unlabeled datasets transformed by CIFAR-10. Especially, SYP lowers RMSE by 1.83-3.97 for ResNet-56 evaluation and 2.32-9.74 for RepVGG-A0 evaluation compared with latest methods. Note that our scheme won the championship on the DataCV Challenge at CVPR 2023. Source code is avaliabe at https://github.com/megvii-research/SYP.