电气工程专业学生学业成绩数据缺失

Log. J. IGPL Pub Date : 2019-12-13 DOI:10.1093/jigpal/jzz056
Esteban Jove, P. Blanco-Rodríguez, J. Casteleiro-Roca, Héctor Quintián-Pardo, Francisco Javier Moreno Arboleda, J. López-Vázquez, B. A. Rodríguez-Gómez, M. Meizoso-López, A. P. Pazos, F. J. D. C. Juez, Sung-Bae Cho, J. Calvo-Rolle
{"title":"电气工程专业学生学业成绩数据缺失","authors":"Esteban Jove, P. Blanco-Rodríguez, J. Casteleiro-Roca, Héctor Quintián-Pardo, Francisco Javier Moreno Arboleda, J. López-Vázquez, B. A. Rodríguez-Gómez, M. Meizoso-López, A. P. Pazos, F. J. D. C. Juez, Sung-Bae Cho, J. Calvo-Rolle","doi":"10.1093/jigpal/jzz056","DOIUrl":null,"url":null,"abstract":"\n Nowadays, the quality standards of higher education institutions pay special attention to the performance and evaluation of the students. Then, having a complete academic record of each student, such as number of attempts, average grade and so on, plays a key role. In this context, the existence of missing data, which can happen for different reasons, leads to affect adversely interesting future analysis. Therefore, the use of imputation techniques is presented as a helpful tool to estimate the value of missing data. This work deals with the academic records of engineering students, in which imputation techniques are applied. More specifically, it is assessed and compared to the performance of the multivariate imputation by chained equations methodology, the adaptive assignation algorithm (AAA) based on multivariate adaptive regression splines and a hybridization based on self-organisation maps with Mahalanobis distances and AAA algorithm. The results show that proposed methods obtain successfully results regardless the number of missing values, in general terms.","PeriodicalId":304915,"journal":{"name":"Log. J. IGPL","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Missing data imputation over academic records of electrical engineering students\",\"authors\":\"Esteban Jove, P. Blanco-Rodríguez, J. Casteleiro-Roca, Héctor Quintián-Pardo, Francisco Javier Moreno Arboleda, J. López-Vázquez, B. A. Rodríguez-Gómez, M. Meizoso-López, A. P. Pazos, F. J. D. C. Juez, Sung-Bae Cho, J. Calvo-Rolle\",\"doi\":\"10.1093/jigpal/jzz056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Nowadays, the quality standards of higher education institutions pay special attention to the performance and evaluation of the students. Then, having a complete academic record of each student, such as number of attempts, average grade and so on, plays a key role. In this context, the existence of missing data, which can happen for different reasons, leads to affect adversely interesting future analysis. Therefore, the use of imputation techniques is presented as a helpful tool to estimate the value of missing data. This work deals with the academic records of engineering students, in which imputation techniques are applied. More specifically, it is assessed and compared to the performance of the multivariate imputation by chained equations methodology, the adaptive assignation algorithm (AAA) based on multivariate adaptive regression splines and a hybridization based on self-organisation maps with Mahalanobis distances and AAA algorithm. The results show that proposed methods obtain successfully results regardless the number of missing values, in general terms.\",\"PeriodicalId\":304915,\"journal\":{\"name\":\"Log. J. IGPL\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Log. J. IGPL\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/jigpal/jzz056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Log. J. IGPL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jigpal/jzz056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

如今,高等教育机构的质量标准特别注重学生的表现和评价。然后,拥有一个完整的学习记录,每个学生,如尝试次数,平均成绩等,起着关键作用。在这种情况下,数据缺失的存在(可能由于不同的原因而发生)会对未来有趣的分析产生不利影响。因此,使用imputation技术作为一个有用的工具来估计缺失数据的价值。这项工作涉及工程学生的学习记录,其中应用了归算技术。更具体地说,评估并比较了链式方程法、基于多元自适应回归样条的自适应赋值算法(AAA)和基于马氏距离的自组织映射的杂交算法的性能。结果表明,在一般情况下,无论缺失值的数量如何,所提出的方法都能获得成功的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Missing data imputation over academic records of electrical engineering students
Nowadays, the quality standards of higher education institutions pay special attention to the performance and evaluation of the students. Then, having a complete academic record of each student, such as number of attempts, average grade and so on, plays a key role. In this context, the existence of missing data, which can happen for different reasons, leads to affect adversely interesting future analysis. Therefore, the use of imputation techniques is presented as a helpful tool to estimate the value of missing data. This work deals with the academic records of engineering students, in which imputation techniques are applied. More specifically, it is assessed and compared to the performance of the multivariate imputation by chained equations methodology, the adaptive assignation algorithm (AAA) based on multivariate adaptive regression splines and a hybridization based on self-organisation maps with Mahalanobis distances and AAA algorithm. The results show that proposed methods obtain successfully results regardless the number of missing values, in general terms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信