超宽带瞬态散射及其在自动目标识别中的应用

H. Lui, F. Aldhubaib, S. Crozier, N. Shuley
{"title":"超宽带瞬态散射及其在自动目标识别中的应用","authors":"H. Lui, F. Aldhubaib, S. Crozier, N. Shuley","doi":"10.5772/INTECHOPEN.75059","DOIUrl":null,"url":null,"abstract":"Reliable radar target recognition has long been the holy grail of electromagnetic sensors. Target recognition based on the singularity expansion method (SEM) uses a time-domain electromagnetic signature and has been well studied over the last few decades. The SEM describes the late time period of the transient target signature as a sum of damped exponentials with natural resonant frequencies (NRFs). The aspect-independent and purely target geometry and material-dependent nature of the NRF set make it an excellent feature set for target characterization. In this chapter, we aim to review the background and the state of the art of resonance-based target recognition. The theoretical framework of SEM is introduced, followed by signal processing techniques that retrieve the target-dependent NRFs embedded in the transient electromagnetic target signatures. The extinction pulse, a well-known target recognition technique, is discussed. This chapter covers recent developments in using a polarimetric signature for target recognition, as well as using NRFs for subsurface sensing applications. The chapter concludes with some highlights of the ongoing challenges in the field.","PeriodicalId":212695,"journal":{"name":"Antennas and Wave Propagation","volume":"117 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Ultra Wideband Transient Scattering and Its Applications to Automated Target Recognition\",\"authors\":\"H. Lui, F. Aldhubaib, S. Crozier, N. Shuley\",\"doi\":\"10.5772/INTECHOPEN.75059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reliable radar target recognition has long been the holy grail of electromagnetic sensors. Target recognition based on the singularity expansion method (SEM) uses a time-domain electromagnetic signature and has been well studied over the last few decades. The SEM describes the late time period of the transient target signature as a sum of damped exponentials with natural resonant frequencies (NRFs). The aspect-independent and purely target geometry and material-dependent nature of the NRF set make it an excellent feature set for target characterization. In this chapter, we aim to review the background and the state of the art of resonance-based target recognition. The theoretical framework of SEM is introduced, followed by signal processing techniques that retrieve the target-dependent NRFs embedded in the transient electromagnetic target signatures. The extinction pulse, a well-known target recognition technique, is discussed. This chapter covers recent developments in using a polarimetric signature for target recognition, as well as using NRFs for subsurface sensing applications. The chapter concludes with some highlights of the ongoing challenges in the field.\",\"PeriodicalId\":212695,\"journal\":{\"name\":\"Antennas and Wave Propagation\",\"volume\":\"117 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Antennas and Wave Propagation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.75059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antennas and Wave Propagation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.75059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

可靠的雷达目标识别一直是电磁传感器的圣杯。基于奇点展开法(SEM)的目标识别使用时域电磁特征,在过去几十年里得到了很好的研究。扫描电镜将瞬态目标信号的后期描述为具有自然共振频率(NRFs)的阻尼指数之和。NRF集的方面无关和纯粹的目标几何和材料依赖性质使其成为目标表征的优秀特征集。在本章中,我们旨在回顾基于共振的目标识别的背景和现状。介绍了扫描电镜的理论框架,然后介绍了检索瞬变电磁目标特征中与目标相关的nrf的信号处理技术。讨论了一种著名的目标识别技术——消光脉冲。本章涵盖了使用偏振特征进行目标识别的最新进展,以及使用nrf进行地下传感应用。本章总结了该领域正在面临的一些挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ultra Wideband Transient Scattering and Its Applications to Automated Target Recognition
Reliable radar target recognition has long been the holy grail of electromagnetic sensors. Target recognition based on the singularity expansion method (SEM) uses a time-domain electromagnetic signature and has been well studied over the last few decades. The SEM describes the late time period of the transient target signature as a sum of damped exponentials with natural resonant frequencies (NRFs). The aspect-independent and purely target geometry and material-dependent nature of the NRF set make it an excellent feature set for target characterization. In this chapter, we aim to review the background and the state of the art of resonance-based target recognition. The theoretical framework of SEM is introduced, followed by signal processing techniques that retrieve the target-dependent NRFs embedded in the transient electromagnetic target signatures. The extinction pulse, a well-known target recognition technique, is discussed. This chapter covers recent developments in using a polarimetric signature for target recognition, as well as using NRFs for subsurface sensing applications. The chapter concludes with some highlights of the ongoing challenges in the field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信