仿人动态任务的协同控制

ICINCO-RA Pub Date : 1900-01-01 DOI:10.5220/0001629001740180
D. Pardo, C. Angulo
{"title":"仿人动态任务的协同控制","authors":"D. Pardo, C. Angulo","doi":"10.5220/0001629001740180","DOIUrl":null,"url":null,"abstract":"This paper describes a collaborative control scheme that governs the dynamic behavior of an articulated mobile robot with several degrees of freedom (DOF) and redundancies. These types of robots need a high level of coordination between the motors performance to complete their motions. In the employed scheme, the actuators involved in a specific task share information, computing integrated control actions. The control functions are found using a stochastic reinforcement learning technique allowing the robot to automatically generate them based on experiences. This type of control is based on a modularization principle: complex overall behavior is the result of the interaction of individual simple components. Unlike the standard procedures, this approach is not meant to follow a trajectory generated by a planner, instead, the trajectory emerges as a consequence of the collaboration between joints movements while seeking the achievement of a goal. The learning of the sensorimotor coordination in a simulated humanoid is presented as a demonstration.","PeriodicalId":302311,"journal":{"name":"ICINCO-RA","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Collaborative control in a humanoid dynamic task\",\"authors\":\"D. Pardo, C. Angulo\",\"doi\":\"10.5220/0001629001740180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a collaborative control scheme that governs the dynamic behavior of an articulated mobile robot with several degrees of freedom (DOF) and redundancies. These types of robots need a high level of coordination between the motors performance to complete their motions. In the employed scheme, the actuators involved in a specific task share information, computing integrated control actions. The control functions are found using a stochastic reinforcement learning technique allowing the robot to automatically generate them based on experiences. This type of control is based on a modularization principle: complex overall behavior is the result of the interaction of individual simple components. Unlike the standard procedures, this approach is not meant to follow a trajectory generated by a planner, instead, the trajectory emerges as a consequence of the collaboration between joints movements while seeking the achievement of a goal. The learning of the sensorimotor coordination in a simulated humanoid is presented as a demonstration.\",\"PeriodicalId\":302311,\"journal\":{\"name\":\"ICINCO-RA\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICINCO-RA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0001629001740180\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICINCO-RA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0001629001740180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种控制多自由度冗余关节移动机器人动态行为的协同控制方案。这些类型的机器人需要高水平的协调电机性能来完成他们的运动。在所采用的方案中,参与特定任务的执行器共享信息,计算综合控制动作。使用随机强化学习技术找到控制函数,允许机器人根据经验自动生成控制函数。这种类型的控制基于模块化原则:复杂的整体行为是单个简单组件相互作用的结果。与标准程序不同,该方法并不意味着遵循计划器生成的轨迹,相反,轨迹是在寻求实现目标时关节运动之间协作的结果。以模拟人形的感觉运动协调学习为例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Collaborative control in a humanoid dynamic task
This paper describes a collaborative control scheme that governs the dynamic behavior of an articulated mobile robot with several degrees of freedom (DOF) and redundancies. These types of robots need a high level of coordination between the motors performance to complete their motions. In the employed scheme, the actuators involved in a specific task share information, computing integrated control actions. The control functions are found using a stochastic reinforcement learning technique allowing the robot to automatically generate them based on experiences. This type of control is based on a modularization principle: complex overall behavior is the result of the interaction of individual simple components. Unlike the standard procedures, this approach is not meant to follow a trajectory generated by a planner, instead, the trajectory emerges as a consequence of the collaboration between joints movements while seeking the achievement of a goal. The learning of the sensorimotor coordination in a simulated humanoid is presented as a demonstration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信