分形几何在印刷天线结构中的应用研究

A. Harish, R.K. Joshi
{"title":"分形几何在印刷天线结构中的应用研究","authors":"A. Harish, R.K. Joshi","doi":"10.1109/AEMC.2007.4638065","DOIUrl":null,"url":null,"abstract":"Several novel antenna structures based on a combination of regular and fractal shaped elements are presented. It has been shown with case studies that the performance of the antennas can be optimized by judicious choice of fractal geometries. Though the fractal elements have a high degree of regularity, introduction of certain irregularities in the structures can result in improved performance of the antennas. Both directly coupled and parasitically coupled fractal elements have been used to construct these novel antenna structures.","PeriodicalId":397229,"journal":{"name":"2007 IEEE Applied Electromagnetics Conference (AEMC)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Studies on application of fractal based geometries in printed antenna structures\",\"authors\":\"A. Harish, R.K. Joshi\",\"doi\":\"10.1109/AEMC.2007.4638065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Several novel antenna structures based on a combination of regular and fractal shaped elements are presented. It has been shown with case studies that the performance of the antennas can be optimized by judicious choice of fractal geometries. Though the fractal elements have a high degree of regularity, introduction of certain irregularities in the structures can result in improved performance of the antennas. Both directly coupled and parasitically coupled fractal elements have been used to construct these novel antenna structures.\",\"PeriodicalId\":397229,\"journal\":{\"name\":\"2007 IEEE Applied Electromagnetics Conference (AEMC)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Applied Electromagnetics Conference (AEMC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AEMC.2007.4638065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Applied Electromagnetics Conference (AEMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AEMC.2007.4638065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

提出了几种基于规则单元和分形单元相结合的新型天线结构。实例研究表明,合理选择分形几何形状可以优化天线的性能。虽然分形元素具有高度的规则性,但在结构中引入一定的不规则性可以提高天线的性能。直接耦合分形单元和寄生耦合分形单元都被用于构造这些新型天线结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Studies on application of fractal based geometries in printed antenna structures
Several novel antenna structures based on a combination of regular and fractal shaped elements are presented. It has been shown with case studies that the performance of the antennas can be optimized by judicious choice of fractal geometries. Though the fractal elements have a high degree of regularity, introduction of certain irregularities in the structures can result in improved performance of the antennas. Both directly coupled and parasitically coupled fractal elements have been used to construct these novel antenna structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信