目标定义

Raymond A. Anderson
{"title":"目标定义","authors":"Raymond A. Anderson","doi":"10.1093/oso/9780192844194.003.0018","DOIUrl":null,"url":null,"abstract":"Predictive models need something to predict. Extracted data is used to set (or confirm) the target definition, if not cast in stone. This is one of the most crucial steps of the process, which may not be straightforward. (1) Overview—i) continuous versus binary targets, and distinctions between probability of default (PD), exposure-at-default (EAD) and loss given default (LGD); ii) definition requirements—relevance, focus, transparency, adequacy and data quality; iii) performance components—automated counters/statuses and manual statuses; iv) code cross-checks—to determine whether statuses are properly understood. (2) Definition strictness—i) status nodes—define treatment {out-of-scope, exclusion, trivial balance, Bad/Indeterminate/Good}; ii) roll-rates—used to define delinquency levels; iii) trivial balances—avoid penalization of minor infractions; iv) closed accounts—possible treatments. (3) Integrity checks—i) consistency—period-on-period changes in distribution; ii) characteristics—ensuring they have the intended influence within the definition; iii) swap-set—assessing new versus old OR alternative definitions.","PeriodicalId":286194,"journal":{"name":"Credit Intelligence & Modelling","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Target Definition\",\"authors\":\"Raymond A. Anderson\",\"doi\":\"10.1093/oso/9780192844194.003.0018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Predictive models need something to predict. Extracted data is used to set (or confirm) the target definition, if not cast in stone. This is one of the most crucial steps of the process, which may not be straightforward. (1) Overview—i) continuous versus binary targets, and distinctions between probability of default (PD), exposure-at-default (EAD) and loss given default (LGD); ii) definition requirements—relevance, focus, transparency, adequacy and data quality; iii) performance components—automated counters/statuses and manual statuses; iv) code cross-checks—to determine whether statuses are properly understood. (2) Definition strictness—i) status nodes—define treatment {out-of-scope, exclusion, trivial balance, Bad/Indeterminate/Good}; ii) roll-rates—used to define delinquency levels; iii) trivial balances—avoid penalization of minor infractions; iv) closed accounts—possible treatments. (3) Integrity checks—i) consistency—period-on-period changes in distribution; ii) characteristics—ensuring they have the intended influence within the definition; iii) swap-set—assessing new versus old OR alternative definitions.\",\"PeriodicalId\":286194,\"journal\":{\"name\":\"Credit Intelligence & Modelling\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Credit Intelligence & Modelling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/oso/9780192844194.003.0018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Credit Intelligence & Modelling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780192844194.003.0018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

预测模型需要预测的东西。提取的数据用于设置(或确认)目标定义,如果不是一成不变的话。这是这个过程中最关键的步骤之一,可能并不简单。(1)概述- 1)连续目标与二元目标,以及违约概率(PD)、违约暴露(EAD)和违约损失(LGD)之间的区别;Ii)定义要求——相关性、重点、透明度、充分性和数据质量;Iii)性能组件——自动计数器/状态和手动状态;代码交叉检查——确定状态是否被正确理解。(2)定义严格性- i)状态节点-定义处理{超出范围、排除、琐碎平衡、坏/不确定/好};Ii)滚动率——用于定义拖欠水平;Iii)小额余额——避免对轻微违规行为进行处罚;4)关闭账户——可能的处理方法。(3)完整性检查- i)一致性-分布的周期性变化;Ii)特征-确保它们在定义内具有预期的影响;iii)对新旧定义或替代定义进行交换集评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Target Definition
Predictive models need something to predict. Extracted data is used to set (or confirm) the target definition, if not cast in stone. This is one of the most crucial steps of the process, which may not be straightforward. (1) Overview—i) continuous versus binary targets, and distinctions between probability of default (PD), exposure-at-default (EAD) and loss given default (LGD); ii) definition requirements—relevance, focus, transparency, adequacy and data quality; iii) performance components—automated counters/statuses and manual statuses; iv) code cross-checks—to determine whether statuses are properly understood. (2) Definition strictness—i) status nodes—define treatment {out-of-scope, exclusion, trivial balance, Bad/Indeterminate/Good}; ii) roll-rates—used to define delinquency levels; iii) trivial balances—avoid penalization of minor infractions; iv) closed accounts—possible treatments. (3) Integrity checks—i) consistency—period-on-period changes in distribution; ii) characteristics—ensuring they have the intended influence within the definition; iii) swap-set—assessing new versus old OR alternative definitions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信