优化在线广告拍卖中出版商的保留价格

Jason Rhuggenaath, A. Akçay, Yingqian Zhang, U. Kaymak
{"title":"优化在线广告拍卖中出版商的保留价格","authors":"Jason Rhuggenaath, A. Akçay, Yingqian Zhang, U. Kaymak","doi":"10.1109/CIFEr.2019.8759123","DOIUrl":null,"url":null,"abstract":"In this paper we consider an online publisher that sells advertisement space and propose a method for learning optimal reserve prices in second-price auctions. We study a limited information setting where the values of the bids are not revealed and no historical information about the values of the bids is available. Our proposed method is based on the principle of Thompson sampling combined with a particle filter to approximate and sample from the posterior distribution. Our method is suitable for non-stationary environments, and we show that, when the distribution of the winning bid suffers from estimation uncertainty, taking the gap between the winning bid and second highest bid into account leads to better decisions for the reserve prices. Experiments using real-life ad auction data show that the proposed method outperforms popular bandit algorithms.","PeriodicalId":368382,"journal":{"name":"2019 IEEE Conference on Computational Intelligence for Financial Engineering & Economics (CIFEr)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Optimizing reserve prices for publishers in online ad auctions\",\"authors\":\"Jason Rhuggenaath, A. Akçay, Yingqian Zhang, U. Kaymak\",\"doi\":\"10.1109/CIFEr.2019.8759123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we consider an online publisher that sells advertisement space and propose a method for learning optimal reserve prices in second-price auctions. We study a limited information setting where the values of the bids are not revealed and no historical information about the values of the bids is available. Our proposed method is based on the principle of Thompson sampling combined with a particle filter to approximate and sample from the posterior distribution. Our method is suitable for non-stationary environments, and we show that, when the distribution of the winning bid suffers from estimation uncertainty, taking the gap between the winning bid and second highest bid into account leads to better decisions for the reserve prices. Experiments using real-life ad auction data show that the proposed method outperforms popular bandit algorithms.\",\"PeriodicalId\":368382,\"journal\":{\"name\":\"2019 IEEE Conference on Computational Intelligence for Financial Engineering & Economics (CIFEr)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Conference on Computational Intelligence for Financial Engineering & Economics (CIFEr)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIFEr.2019.8759123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Conference on Computational Intelligence for Financial Engineering & Economics (CIFEr)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIFEr.2019.8759123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

本文考虑一个出售广告位的在线出版商,并提出了一种学习第二价格拍卖中最优保留价格的方法。我们研究了一个有限的信息设置,其中出价的值是不显示的,没有关于出价值的历史信息。我们提出的方法是基于汤普森采样的原理,结合粒子滤波对后验分布进行近似和采样。我们的方法适用于非平稳环境,并且我们表明,当中标价的分布受到估计不确定性的影响时,考虑中标价与第二高价之间的差距可以更好地决定保留价格。使用真实广告拍卖数据的实验表明,该方法优于流行的强盗算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing reserve prices for publishers in online ad auctions
In this paper we consider an online publisher that sells advertisement space and propose a method for learning optimal reserve prices in second-price auctions. We study a limited information setting where the values of the bids are not revealed and no historical information about the values of the bids is available. Our proposed method is based on the principle of Thompson sampling combined with a particle filter to approximate and sample from the posterior distribution. Our method is suitable for non-stationary environments, and we show that, when the distribution of the winning bid suffers from estimation uncertainty, taking the gap between the winning bid and second highest bid into account leads to better decisions for the reserve prices. Experiments using real-life ad auction data show that the proposed method outperforms popular bandit algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信