一种用于三维形状识别的改进MVCNN

Yan Wang, Wanxia Zhong, Hang Su, Fujian Zheng, Yiran Pang, Hongchuan Wen, Kun Cai
{"title":"一种用于三维形状识别的改进MVCNN","authors":"Yan Wang, Wanxia Zhong, Hang Su, Fujian Zheng, Yiran Pang, Hongchuan Wen, Kun Cai","doi":"10.1109/ICESIT53460.2021.9696941","DOIUrl":null,"url":null,"abstract":"The multi-view convolutional neural network architecture represented by MVCNN has achieved great success in 3D shape recognition. Taking the MVCNN architecture as the research goal, this paper proposes a novel 3D shape recognition convolutional neural network Attention-MVCNN that integrates channel attention mechanism, residual structure and Mish activation function. The channel attention machine is used to make the feature extraction network for Attention-MVCNN, which can reduce the feature redundancy caused by traditional convolution. The residual structure can reduce the network over-fitting problem and achieve better gradient information, thereby improving the performance of Attention-MVCNN. We replace the activation function in the Attention-MVCNN network with Mish, a self-regular non-monotonic neural activation function. The smooth activation function allows better information to penetrate the neural network, resulting in better accuracy and generalization. Experiments show that the improved Attention-MVCNN attains the competitive results on ModelNet40 dataset.","PeriodicalId":164745,"journal":{"name":"2021 IEEE International Conference on Emergency Science and Information Technology (ICESIT)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An Improved MVCNN for 3D Shape Recognition\",\"authors\":\"Yan Wang, Wanxia Zhong, Hang Su, Fujian Zheng, Yiran Pang, Hongchuan Wen, Kun Cai\",\"doi\":\"10.1109/ICESIT53460.2021.9696941\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The multi-view convolutional neural network architecture represented by MVCNN has achieved great success in 3D shape recognition. Taking the MVCNN architecture as the research goal, this paper proposes a novel 3D shape recognition convolutional neural network Attention-MVCNN that integrates channel attention mechanism, residual structure and Mish activation function. The channel attention machine is used to make the feature extraction network for Attention-MVCNN, which can reduce the feature redundancy caused by traditional convolution. The residual structure can reduce the network over-fitting problem and achieve better gradient information, thereby improving the performance of Attention-MVCNN. We replace the activation function in the Attention-MVCNN network with Mish, a self-regular non-monotonic neural activation function. The smooth activation function allows better information to penetrate the neural network, resulting in better accuracy and generalization. Experiments show that the improved Attention-MVCNN attains the competitive results on ModelNet40 dataset.\",\"PeriodicalId\":164745,\"journal\":{\"name\":\"2021 IEEE International Conference on Emergency Science and Information Technology (ICESIT)\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Emergency Science and Information Technology (ICESIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICESIT53460.2021.9696941\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Emergency Science and Information Technology (ICESIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICESIT53460.2021.9696941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

以MVCNN为代表的多视点卷积神经网络体系结构在三维形状识别中取得了巨大成功。本文以MVCNN结构为研究目标,提出了一种集通道注意机制、残差结构和Mish激活函数于一体的新型三维形状识别卷积神经网络attention -MVCNN。利用通道注意机构建了attention - mvcnn的特征提取网络,减少了传统卷积带来的特征冗余。残差结构可以减少网络的过拟合问题,获得更好的梯度信息,从而提高Attention-MVCNN的性能。我们用自正则非单调神经激活函数Mish代替了Attention-MVCNN网络中的激活函数。平滑的激活函数允许更好的信息穿透神经网络,从而获得更好的准确性和泛化。实验表明,改进后的Attention-MVCNN在ModelNet40数据集上取得了相当好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Improved MVCNN for 3D Shape Recognition
The multi-view convolutional neural network architecture represented by MVCNN has achieved great success in 3D shape recognition. Taking the MVCNN architecture as the research goal, this paper proposes a novel 3D shape recognition convolutional neural network Attention-MVCNN that integrates channel attention mechanism, residual structure and Mish activation function. The channel attention machine is used to make the feature extraction network for Attention-MVCNN, which can reduce the feature redundancy caused by traditional convolution. The residual structure can reduce the network over-fitting problem and achieve better gradient information, thereby improving the performance of Attention-MVCNN. We replace the activation function in the Attention-MVCNN network with Mish, a self-regular non-monotonic neural activation function. The smooth activation function allows better information to penetrate the neural network, resulting in better accuracy and generalization. Experiments show that the improved Attention-MVCNN attains the competitive results on ModelNet40 dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信