模糊半参数Logistic分位数回归模型

A. Razzaq, Ayad H. shemaila
{"title":"模糊半参数Logistic分位数回归模型","authors":"A. Razzaq, Ayad H. shemaila","doi":"10.31185/wjps.80","DOIUrl":null,"url":null,"abstract":"In this paper, the fuzzy semi-parametric logistic quantile regression model was studied in the absence of special conditions in the classical regression models. This model becomes more flexible to deal with data for outlier's values and in the absence of a linear regression condition when the data of the dependent variable are restricted and fuzzy data and some of the variables are nonparametric, and the dependent variable in this model represents the fuzzy triangular number. \nThe estimation of the semi-parametric logistic quantile regression model has been applied to simulated data when the sample size is (25, 50, 75, 100) and with a repetition of 1000. Where the model is estimated in two steps, the first step is to estimate the parametric part, and the second step is to estimate the non-parametric part by the Nadaraya-Watson estimator through different kernel functions. Depending on the mean squares error and the measure of goodness of fit, the results indicated the best estimate of a model with the Kernel-Cassian function when the quantile of the fuzzy conditional distribution equals 0.2 for all sample sizes  .","PeriodicalId":167115,"journal":{"name":"Wasit Journal of Pure sciences","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fuzzy Semi-Parametric Logistic Quantile Regression Model\",\"authors\":\"A. Razzaq, Ayad H. shemaila\",\"doi\":\"10.31185/wjps.80\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the fuzzy semi-parametric logistic quantile regression model was studied in the absence of special conditions in the classical regression models. This model becomes more flexible to deal with data for outlier's values and in the absence of a linear regression condition when the data of the dependent variable are restricted and fuzzy data and some of the variables are nonparametric, and the dependent variable in this model represents the fuzzy triangular number. \\nThe estimation of the semi-parametric logistic quantile regression model has been applied to simulated data when the sample size is (25, 50, 75, 100) and with a repetition of 1000. Where the model is estimated in two steps, the first step is to estimate the parametric part, and the second step is to estimate the non-parametric part by the Nadaraya-Watson estimator through different kernel functions. Depending on the mean squares error and the measure of goodness of fit, the results indicated the best estimate of a model with the Kernel-Cassian function when the quantile of the fuzzy conditional distribution equals 0.2 for all sample sizes  .\",\"PeriodicalId\":167115,\"journal\":{\"name\":\"Wasit Journal of Pure sciences\",\"volume\":\"116 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wasit Journal of Pure sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31185/wjps.80\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wasit Journal of Pure sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31185/wjps.80","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在经典回归模型中不存在特殊条件的情况下,研究了模糊半参数逻辑分位数回归模型。该模型在因变量数据受限、模糊数据和部分变量是非参数的情况下,能够更灵活地处理离群值数据和无线性回归条件下的数据,该模型中的因变量表示为模糊三角数。将半参数逻辑分位数回归模型的估计应用于样本量为(25,50,75,100)和重复次数为1000的模拟数据。其中对模型的估计分两步进行,第一步是对参数部分进行估计,第二步是利用Nadaraya-Watson估计器通过不同的核函数对非参数部分进行估计。根据均方误差和拟合优度的度量,结果表明,当模糊条件分布的分位数等于0.2时,对所有样本量的模型都具有Kernel-Cassian函数的最佳估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fuzzy Semi-Parametric Logistic Quantile Regression Model
In this paper, the fuzzy semi-parametric logistic quantile regression model was studied in the absence of special conditions in the classical regression models. This model becomes more flexible to deal with data for outlier's values and in the absence of a linear regression condition when the data of the dependent variable are restricted and fuzzy data and some of the variables are nonparametric, and the dependent variable in this model represents the fuzzy triangular number. The estimation of the semi-parametric logistic quantile regression model has been applied to simulated data when the sample size is (25, 50, 75, 100) and with a repetition of 1000. Where the model is estimated in two steps, the first step is to estimate the parametric part, and the second step is to estimate the non-parametric part by the Nadaraya-Watson estimator through different kernel functions. Depending on the mean squares error and the measure of goodness of fit, the results indicated the best estimate of a model with the Kernel-Cassian function when the quantile of the fuzzy conditional distribution equals 0.2 for all sample sizes  .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信