分割链的表面交叉猜想

Joshua Wang
{"title":"分割链的表面交叉猜想","authors":"Joshua Wang","doi":"10.2140/gt.2022.26.2941","DOIUrl":null,"url":null,"abstract":"Given a band sum of a split two-component link along a nontrivial band, we obtain a family of knots indexed by the integers by adding any number of full twists to the band. We show that the knots in this family have the same Heegaard knot Floer homology and the same instanton knot Floer homology. In contrast, a generalization of the cosmetic crossing conjecture predicts that the knots in this family are all distinct. We verify this prediction by showing that any two knots in this family have distinct Khovanov homology. Along the way, we prove that each of the three knot homologies detects the trivial band.","PeriodicalId":254292,"journal":{"name":"Geometry & Topology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"The cosmetic crossing conjecture for split links\",\"authors\":\"Joshua Wang\",\"doi\":\"10.2140/gt.2022.26.2941\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a band sum of a split two-component link along a nontrivial band, we obtain a family of knots indexed by the integers by adding any number of full twists to the band. We show that the knots in this family have the same Heegaard knot Floer homology and the same instanton knot Floer homology. In contrast, a generalization of the cosmetic crossing conjecture predicts that the knots in this family are all distinct. We verify this prediction by showing that any two knots in this family have distinct Khovanov homology. Along the way, we prove that each of the three knot homologies detects the trivial band.\",\"PeriodicalId\":254292,\"journal\":{\"name\":\"Geometry & Topology\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometry & Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/gt.2022.26.2941\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2022.26.2941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

给定沿非平凡带的分裂双分量连杆的带和,通过在带上添加任意数量的完全扭转,我们得到以整数为索引的结族。我们证明了这个家族中的结具有相同的Heegaard结花同源性和相同的瞬时结花同源性。与此相反,对外观交叉猜想的概括预测,这个家族中的结都是不同的。我们通过证明这个家族中的任何两个结具有不同的Khovanov同源性来验证这一预测。在此过程中,我们证明了三种结同调中的每一种都检测到平凡带。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The cosmetic crossing conjecture for split links
Given a band sum of a split two-component link along a nontrivial band, we obtain a family of knots indexed by the integers by adding any number of full twists to the band. We show that the knots in this family have the same Heegaard knot Floer homology and the same instanton knot Floer homology. In contrast, a generalization of the cosmetic crossing conjecture predicts that the knots in this family are all distinct. We verify this prediction by showing that any two knots in this family have distinct Khovanov homology. Along the way, we prove that each of the three knot homologies detects the trivial band.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信