一种改进的基于递归神经网络的在线英语手写文本分割方法

C. Nguyen, M. Nakagawa
{"title":"一种改进的基于递归神经网络的在线英语手写文本分割方法","authors":"C. Nguyen, M. Nakagawa","doi":"10.1109/ACPR.2015.7486489","DOIUrl":null,"url":null,"abstract":"Segmentation of online handwritten text recognition is better to employ the dependency on context of strokes written before and after it. This paper shows an application of Bidirectional Long Short-term Memory recurrent neural networks for segmentation of on-line handwritten English text. The networks allow incorporating long-range context from both forward and backward directions to improve the confident of segmentation over uncertainty. We show that applying the method in the semi-incremental recognition of online handwritten English text reduces up to 62% of waiting time, 50% of processing time. Moreover, recognition rate of the system also improves remarkably by 3 points from 71.7%.","PeriodicalId":240902,"journal":{"name":"2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR)","volume":"155 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"An improved segmentation of online English handwritten text using recurrent neural networks\",\"authors\":\"C. Nguyen, M. Nakagawa\",\"doi\":\"10.1109/ACPR.2015.7486489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Segmentation of online handwritten text recognition is better to employ the dependency on context of strokes written before and after it. This paper shows an application of Bidirectional Long Short-term Memory recurrent neural networks for segmentation of on-line handwritten English text. The networks allow incorporating long-range context from both forward and backward directions to improve the confident of segmentation over uncertainty. We show that applying the method in the semi-incremental recognition of online handwritten English text reduces up to 62% of waiting time, 50% of processing time. Moreover, recognition rate of the system also improves remarkably by 3 points from 71.7%.\",\"PeriodicalId\":240902,\"journal\":{\"name\":\"2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR)\",\"volume\":\"155 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACPR.2015.7486489\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACPR.2015.7486489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

在线手写体文本识别分割中,利用对前后笔画上下文的依赖是比较好的。本文介绍了双向长短期记忆递归神经网络在在线手写英语文本分割中的应用。该网络允许结合来自向前和向后方向的远程上下文,以提高对不确定性分割的信心。我们表明,将该方法应用于在线手写英语文本的半增量识别,可减少高达62%的等待时间和50%的处理时间。此外,系统的识别率也从71.7%显著提高了3个点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An improved segmentation of online English handwritten text using recurrent neural networks
Segmentation of online handwritten text recognition is better to employ the dependency on context of strokes written before and after it. This paper shows an application of Bidirectional Long Short-term Memory recurrent neural networks for segmentation of on-line handwritten English text. The networks allow incorporating long-range context from both forward and backward directions to improve the confident of segmentation over uncertainty. We show that applying the method in the semi-incremental recognition of online handwritten English text reduces up to 62% of waiting time, 50% of processing time. Moreover, recognition rate of the system also improves remarkably by 3 points from 71.7%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信