中指骨评估用于年龄鉴定

Ikke Amalia Risky, T. Harsono, R. Sigit
{"title":"中指骨评估用于年龄鉴定","authors":"Ikke Amalia Risky, T. Harsono, R. Sigit","doi":"10.1109/KCIC.2017.8228601","DOIUrl":null,"url":null,"abstract":"People who died because of natural disaster, airplane crash or vehicle accident are hard to identified. There are many parameters that used by forensic doctor to identify victims corpes. Bone is one of parameters that used by doctors to identify victims age, it provide accurate result compared to other diagnoses. But, it takes a long time for the doctors to identify manually. From those problems, we tried to develop an automatic system which can identify victims age using middle finger bone. An active shape model segmentation method applied in this system to extract middle finger bone. There are six parts of middle finger bone that used to analize age, proximal epyphisis, proximal metaphysis, middle epyphysis, middle metaphysis, distal epyphysis, and distal metaphysis. We measured the length of each parts to be input in age classification using k-Nearest Neighbor method. By using this method, 85% from 73 different experimental data has been succeeded to identified. We believe this can bring benefit for the future of forensic identification.","PeriodicalId":117148,"journal":{"name":"2017 International Electronics Symposium on Knowledge Creation and Intelligent Computing (IES-KCIC)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Middle finger bone assessment for age identification\",\"authors\":\"Ikke Amalia Risky, T. Harsono, R. Sigit\",\"doi\":\"10.1109/KCIC.2017.8228601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"People who died because of natural disaster, airplane crash or vehicle accident are hard to identified. There are many parameters that used by forensic doctor to identify victims corpes. Bone is one of parameters that used by doctors to identify victims age, it provide accurate result compared to other diagnoses. But, it takes a long time for the doctors to identify manually. From those problems, we tried to develop an automatic system which can identify victims age using middle finger bone. An active shape model segmentation method applied in this system to extract middle finger bone. There are six parts of middle finger bone that used to analize age, proximal epyphisis, proximal metaphysis, middle epyphysis, middle metaphysis, distal epyphysis, and distal metaphysis. We measured the length of each parts to be input in age classification using k-Nearest Neighbor method. By using this method, 85% from 73 different experimental data has been succeeded to identified. We believe this can bring benefit for the future of forensic identification.\",\"PeriodicalId\":117148,\"journal\":{\"name\":\"2017 International Electronics Symposium on Knowledge Creation and Intelligent Computing (IES-KCIC)\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Electronics Symposium on Knowledge Creation and Intelligent Computing (IES-KCIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/KCIC.2017.8228601\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Electronics Symposium on Knowledge Creation and Intelligent Computing (IES-KCIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KCIC.2017.8228601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

因自然灾害、飞机失事或交通事故而死亡的人很难辨认。法医鉴定受害者尸体时使用了许多参数。骨是医生用来确定受害者年龄的参数之一,与其他诊断相比,它提供了准确的结果。但是,医生手动识别需要很长时间。针对这些问题,我们尝试开发一种可以利用中指骨识别受害者年龄的自动系统。该系统采用主动形状模型分割方法提取中指骨。中指骨有6个部位用于分析年龄,上肢近端、骺端近端、骺端中、骺端中、骺端远端、骺端远端。在年龄分类中,我们使用k-最近邻法测量每个要输入的部分的长度。用该方法对73个不同的实验数据进行了85%的识别。我们相信这可以为未来的法医鉴定带来好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Middle finger bone assessment for age identification
People who died because of natural disaster, airplane crash or vehicle accident are hard to identified. There are many parameters that used by forensic doctor to identify victims corpes. Bone is one of parameters that used by doctors to identify victims age, it provide accurate result compared to other diagnoses. But, it takes a long time for the doctors to identify manually. From those problems, we tried to develop an automatic system which can identify victims age using middle finger bone. An active shape model segmentation method applied in this system to extract middle finger bone. There are six parts of middle finger bone that used to analize age, proximal epyphisis, proximal metaphysis, middle epyphysis, middle metaphysis, distal epyphysis, and distal metaphysis. We measured the length of each parts to be input in age classification using k-Nearest Neighbor method. By using this method, 85% from 73 different experimental data has been succeeded to identified. We believe this can bring benefit for the future of forensic identification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信