太赫兹、红外和光学波段纳米天线的电磁理论

G. Slepyan, M. Shuba, A. Nemilentsau, S. Maksimenko
{"title":"太赫兹、红外和光学波段纳米天线的电磁理论","authors":"G. Slepyan, M. Shuba, A. Nemilentsau, S. Maksimenko","doi":"10.1109/MMET.2008.4580910","DOIUrl":null,"url":null,"abstract":"An electrodynamical theory of the vibrator nanoantenna based on the different types of carbon nanotubes (CNTs) has been presented. The theory covers a wide frequency range from terahertz to optical frequencies. It is based on the quantum-mechanical description of the CNT conductivity. The boundary-value electrodynamical problem has been formulated using the effective boundary conditions method and has been solved by the integral equations technique. As a result, a number of general properties of CNT-based nanoantennas have been revealed. These properties are very promising for potential applications in nanoelectronics, high resolution near field optical microscopy, thermal microscopy, etc.","PeriodicalId":141554,"journal":{"name":"2008 12th International Conference on Mathematical Methods in Electromagnetic Theory","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Electromagnetic theory of nanodimensional antennas for terahertz, infrared and optical regimes\",\"authors\":\"G. Slepyan, M. Shuba, A. Nemilentsau, S. Maksimenko\",\"doi\":\"10.1109/MMET.2008.4580910\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An electrodynamical theory of the vibrator nanoantenna based on the different types of carbon nanotubes (CNTs) has been presented. The theory covers a wide frequency range from terahertz to optical frequencies. It is based on the quantum-mechanical description of the CNT conductivity. The boundary-value electrodynamical problem has been formulated using the effective boundary conditions method and has been solved by the integral equations technique. As a result, a number of general properties of CNT-based nanoantennas have been revealed. These properties are very promising for potential applications in nanoelectronics, high resolution near field optical microscopy, thermal microscopy, etc.\",\"PeriodicalId\":141554,\"journal\":{\"name\":\"2008 12th International Conference on Mathematical Methods in Electromagnetic Theory\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 12th International Conference on Mathematical Methods in Electromagnetic Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMET.2008.4580910\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 12th International Conference on Mathematical Methods in Electromagnetic Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMET.2008.4580910","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

提出了一种基于不同类型碳纳米管的振动器纳米天线的电动力学理论。该理论涵盖了从太赫兹到光学频率的广泛频率范围。它是基于碳纳米管电导率的量子力学描述。采用有效边界条件法对边值电动力学问题进行了表述,并用积分方程技术对其进行了求解。结果揭示了碳纳米管纳米天线的一些一般特性。这些特性在纳米电子学、高分辨率近场光学显微镜、热显微镜等领域具有潜在的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electromagnetic theory of nanodimensional antennas for terahertz, infrared and optical regimes
An electrodynamical theory of the vibrator nanoantenna based on the different types of carbon nanotubes (CNTs) has been presented. The theory covers a wide frequency range from terahertz to optical frequencies. It is based on the quantum-mechanical description of the CNT conductivity. The boundary-value electrodynamical problem has been formulated using the effective boundary conditions method and has been solved by the integral equations technique. As a result, a number of general properties of CNT-based nanoantennas have been revealed. These properties are very promising for potential applications in nanoelectronics, high resolution near field optical microscopy, thermal microscopy, etc.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信