在信念函数框架下对数据流进行聚类

M. Bahri, Zied Elouedi
{"title":"在信念函数框架下对数据流进行聚类","authors":"M. Bahri, Zied Elouedi","doi":"10.1109/AICCSA.2016.7945618","DOIUrl":null,"url":null,"abstract":"Clustering is a crucial task for massive data that continuously arrive and evolve over time, generated as stream. However, data may be pervaded by uncertainty and imprecision, and techniques that achieve the unsupervised learning with imperfect data sets are unable to deal with such evolving environment. On the other hand, standard methods for clustering data streams are not adapted to an uncertain framework. Hence, in this paper, we propose a method for clustering data stream in an imperfect context, particularly using belief function theory in order to handle the belonging of objects to singletons and disjunctions of clusters.","PeriodicalId":448329,"journal":{"name":"2016 IEEE/ACS 13th International Conference of Computer Systems and Applications (AICCSA)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Clustering data stream under a belief function framework\",\"authors\":\"M. Bahri, Zied Elouedi\",\"doi\":\"10.1109/AICCSA.2016.7945618\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Clustering is a crucial task for massive data that continuously arrive and evolve over time, generated as stream. However, data may be pervaded by uncertainty and imprecision, and techniques that achieve the unsupervised learning with imperfect data sets are unable to deal with such evolving environment. On the other hand, standard methods for clustering data streams are not adapted to an uncertain framework. Hence, in this paper, we propose a method for clustering data stream in an imperfect context, particularly using belief function theory in order to handle the belonging of objects to singletons and disjunctions of clusters.\",\"PeriodicalId\":448329,\"journal\":{\"name\":\"2016 IEEE/ACS 13th International Conference of Computer Systems and Applications (AICCSA)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE/ACS 13th International Conference of Computer Systems and Applications (AICCSA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AICCSA.2016.7945618\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/ACS 13th International Conference of Computer Systems and Applications (AICCSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICCSA.2016.7945618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

随着时间的推移,海量数据以数据流的形式不断涌现和演变,对于这些数据来说,聚类是一项至关重要的任务。然而,数据中可能充斥着不确定性和不精确性,利用不完善的数据集实现无监督学习的技术无法应对这种不断变化的环境。另一方面,对数据流进行聚类的标准方法也无法适应不确定的框架。因此,在本文中,我们提出了一种在不完美环境下对数据流进行聚类的方法,特别是利用信念函数理论来处理对象属于单一聚类和聚类不连贯的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Clustering data stream under a belief function framework
Clustering is a crucial task for massive data that continuously arrive and evolve over time, generated as stream. However, data may be pervaded by uncertainty and imprecision, and techniques that achieve the unsupervised learning with imperfect data sets are unable to deal with such evolving environment. On the other hand, standard methods for clustering data streams are not adapted to an uncertain framework. Hence, in this paper, we propose a method for clustering data stream in an imperfect context, particularly using belief function theory in order to handle the belonging of objects to singletons and disjunctions of clusters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信