基于神经模糊自适应遗传方法的时间序列智能处理

A. K. Palit, D. Popovic
{"title":"基于神经模糊自适应遗传方法的时间序列智能处理","authors":"A. K. Palit, D. Popovic","doi":"10.1109/ICIT.2000.854114","DOIUrl":null,"url":null,"abstract":"An intelligent approach is proposed for processing of time series based on a neuro-fuzzy network and an adaptive genetic algorithm (AGA). A chaotic time series data is used for network training because the trained network should be applied for forecasting of chaotic time series. A simple technique is used to measure the convergence speed of the GA, which in turn determines the probability values of genetic operators in each generation. Using the adaptive versions of probability values of genetic operators the modified GA version has improved its convergence towards the desired fitness function. As the accuracy measure of the forecast the performance indices such as sum square error (SSE), mean square error (MSE), and mean absolute error (MAE) are used. It was shown that the proposed intelligent approach is an excellent tool for forecasting the chaotic time series.","PeriodicalId":405648,"journal":{"name":"Proceedings of IEEE International Conference on Industrial Technology 2000 (IEEE Cat. No.00TH8482)","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Intelligent processing of time series using neuro-fuzzy adaptive genetic approach\",\"authors\":\"A. K. Palit, D. Popovic\",\"doi\":\"10.1109/ICIT.2000.854114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An intelligent approach is proposed for processing of time series based on a neuro-fuzzy network and an adaptive genetic algorithm (AGA). A chaotic time series data is used for network training because the trained network should be applied for forecasting of chaotic time series. A simple technique is used to measure the convergence speed of the GA, which in turn determines the probability values of genetic operators in each generation. Using the adaptive versions of probability values of genetic operators the modified GA version has improved its convergence towards the desired fitness function. As the accuracy measure of the forecast the performance indices such as sum square error (SSE), mean square error (MSE), and mean absolute error (MAE) are used. It was shown that the proposed intelligent approach is an excellent tool for forecasting the chaotic time series.\",\"PeriodicalId\":405648,\"journal\":{\"name\":\"Proceedings of IEEE International Conference on Industrial Technology 2000 (IEEE Cat. No.00TH8482)\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of IEEE International Conference on Industrial Technology 2000 (IEEE Cat. No.00TH8482)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIT.2000.854114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE International Conference on Industrial Technology 2000 (IEEE Cat. No.00TH8482)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIT.2000.854114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

提出了一种基于神经模糊网络和自适应遗传算法的时间序列智能处理方法。使用混沌时间序列数据进行网络训练是因为训练后的网络需要用于混沌时间序列的预测。采用一种简单的技术来测量遗传算法的收敛速度,从而确定每一代遗传算子的概率值。利用遗传算子概率值的自适应版本,改进的遗传算法提高了对期望适应度函数的收敛性。采用平方和误差(sum square error, SSE)、均方误差(mean square error, MSE)和平均绝对误差(mean absolute error, MAE)等性能指标作为预测精度的度量。结果表明,该方法是预测混沌时间序列的一种有效工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intelligent processing of time series using neuro-fuzzy adaptive genetic approach
An intelligent approach is proposed for processing of time series based on a neuro-fuzzy network and an adaptive genetic algorithm (AGA). A chaotic time series data is used for network training because the trained network should be applied for forecasting of chaotic time series. A simple technique is used to measure the convergence speed of the GA, which in turn determines the probability values of genetic operators in each generation. Using the adaptive versions of probability values of genetic operators the modified GA version has improved its convergence towards the desired fitness function. As the accuracy measure of the forecast the performance indices such as sum square error (SSE), mean square error (MSE), and mean absolute error (MAE) are used. It was shown that the proposed intelligent approach is an excellent tool for forecasting the chaotic time series.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信